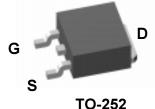


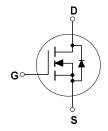
MTD3055V*

N-Channel Enhancement Mode Field Effect Transistor

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{\rm DS(ON)}$ specifications.


The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 12 A, 60 V. $R_{DS(ON)}$ = 0.15 Ω @ V_{GS} = 10 V
- · Low gate charge.
- · Fast switching speed.
- High performance technology for low $R_{\scriptscriptstyle DS(ON)}$.

Absolute	Maximum	Ratings	Tc=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain-Source Voltage	60	V
V _{GSS}	Gate-Source Voltage	±20	V
ID	Maximum Drain Current -Continuous (Note 1)	12	Α
	T _C = 100°C (Note 1)	7.3	
	Maximum Drain Current -Pulsed	37	1
P _D	Maximum Power Dissipation @ T _C = 25°C (Note 1)	48	W
	T _A = 25°C (Note 1a)	3.9	
	$T_A = 25^{\circ}C$ (Note 1b)	1.5	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +175	∘C

Thermal Characteristics

R _{eJC}	Thermal Resistance, Junction-to- Case	(Note 1)	3.13	∘C/W
R _{eJA}	Thermal Resistance, Junction-to- Ambient	(Note 1a)	38	∘C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
MTD3055V	MTD3055V	13"	16mm	2500

^{*} Die and manufacturing source subject to change without prior notification.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
DRAIN-S	OURCE AVALANCHE RATI	NGS (Note 2)				•
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	V _{DD} = 25 V ₁ I _D = 12 A			72	mJ
I _{AR}	Maximum Drain-Source Avalanche	e Current			12	Α
Off Chara	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	60			V
$\frac{\Delta^{BV t DSS}}{\Delta^{T t J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 _μ A, Referenced to 25°C		42		mV/∘C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V			10	μΑ
		V _{DS} = 60 V, V _{GS} = 0 V, T _J = 150°C			100	
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Chara	acteristics (Note 2)					
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	2	2.8	4	V
$\frac{\Delta V^{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-2.3		mV/∘C
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 6 A,			0.15	Ω
$V_{DS(on)}$	Drain-Source On-Voltage On-Resistance	V _{GS} = 10 V,I _D = 12 A V _{GS} = 10 V,I _D = 6 A, T _J = 150∘C			2.2 1.9	V
g FS	Forward Transconductance	V _{DS} = 7 V, I _D = 6 A	4.0			S
Dynamic	Characteristics				,	•
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,			500	pF
Coss	Output Capacitance	f = 1.0 MHz			180	pF
C _{rss}	Reverse Transfer Capacitance				50	pF
Switchin	g Characteristics (Note 2)		•	•		•
t _{d(on)}	Turn-On Delay Time	V _{DD} = 30 V, I _D = 12 A,			10	ns
tr	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 9.1 \Omega$			60	ns
t _{d(off)}	Turn-Off Delay Time				30	ns
t _f	Turn-Off Fall Time				50	ns
Q _g	Total Gate Charge	V _{DS} = 48 V,		12.7	17	nC
Q _{gs}	Gate-Source Charge	I _D = 12 A, V _{GS} = 10 V		3.2		nC
Q _{qd}	Gate-Drain Charge			7		nC
	urce Diode Characteristics	and Maximum Ratings		ı		
Is	Maximum Continuous Drain-Sourc				12	А
I _{SM}	Maximum Pulsed Drain-Source Did				37	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 12 A (Note 2)			1.6	V
t _{rr}	Drain-Source Reverse Recovery	$I_F = 12 \text{ A}, \text{ di/dt} = 100 \text{A/}\mu\text{s}$		46		nS

^{1.} R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the drain tab. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.