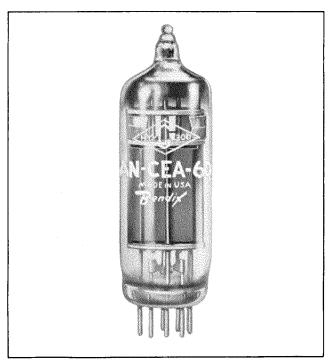
File Catalog: Electron Tube Products

Section: Receiving Tubes

RELIABLE HARD GLASS MINIATURE BEAM POWER AMPLIFIER

DESCRIPTION

This miniature beam power amplifier is one of the Bendix Red Bank line of reliable vacuum tubes specifically designed for aircraft, military and industrial applications where freedom from early failures, long average service life, and uniform operating characteristics are extremely important. Each tube is given a 45-hour run-in under various vibration and shock conditions likely to be encountered in service. This run-in serves to reduce early failures by eliminating tubes with any minor defects that might lead to failure under operating conditions.


In addition, this tube is designed for use in equipment with high ambient temperatures and where high levels of vibration, shock and other accelerations are encountered. Careful exhaust to a high degree of vacuum with thorough outgassing of all elements with electron bombardment is employed to ensure long life expectancy. A hard glass (nonex) bulb and stem with nickel pins are used. These, together with a conservative design center of cathode temperature, permit operation of these tubes up to bulb temperatures of 300°C, in contrast to an average of 175°C for soft glass bulbs. In addition, because of the lower expansion of the tungsten-nonex seal (about onethird that of conventional lime or lead glass), greater resistance to thermal shock is obtained. The nickel pins are gold plated to assure excellent contact resistance throughout life with freedom from corrosion.

This tube employs pressed ceramic spacers, instead of micas, for element separation. High temperature metal snubbers are used to snub the tube structure with respect to the bulb. Mica when used in contact with the hot cathode, deteriorates rapidly under shock and vibration conditions. Ceramic eleminates this problem and, furthermore, reduces damage caused by fatigue failure of parts.

CHART 1. ELECTRICAL RATINGS*

Heater Voltage (AC or DC)**	6.3	volts
Heater Current	0.6	amps
Plate Voltage (Maximum DC)	300	volts
Screen Voltage (Maximum DC)	275	volts
Peak Plate Voltage (Max. Instantane-		
ous)***	550	volts
Plate Dissipation (Absolute Max.)***	14.0	watts
Screen Dissipation (Absolute Max.)***	2.0	watts
Cathode Current (Max. Instantaneous		
Peak Value)	100.0	mΑ
Heater-Cathode Voltage (Max.)	± 450	volts
Grid Resistance (Max.)	0.1	megohm
Grid Voltage (Max.)	+5.0	volts
(Min.)	-200.0	volts
Cathode Warm-up Time	45	seconds
(plate and heater voltage may be		
applied simultaneously)		

^{*}To obtain greatest life expectancy from tube, avoid designs where the tube is subjected to all maximum ratings simultaneously. See application notes.

The heavy-gauge heater construction, together with a pure alumina insulator, permits operation at high heatercathode voltages. The large area cathode operating at moderate temperatures gives long service life. Small mass of the tube elements, multi-pillar mount locked together with eyelets, and increased electrode spacing provide rigidity, strength, and increased ability of the tube to withstand shock and vibration.

See the enlarged view on last page for the many improved features of this tube.

CHART 2. MECHANICAL DATA

Base9-Pin	Miniature Nonex Glass—
Bulb	Nonex Glass—T61/2
Max. Overall Length	
Max. Seated Height	2¾″
Max. Diameter	
Mounting Position	any
Max. Altitude***	80,000 feet
Max. Bulb Temperature	300°C
Max. Impact Shock	500 G
Max. Vibrational Acceleration	50 G
(100 hour shock excited fatigue	
test, sample basis)	
Life Expectancy	10,000 hrs.

^{**}Voltage should not fluctuate more than \pm 5%.

EATONTOWN, NEW JERSEY

^{***}See altitude chart on page 3.

ELECTRICAL CHARACTERISTICS AND TEST DATA

MAX.

-2.0

1.6

10.0

6.0

u A d c

uufds

uufds

uufds

ohms

Ehk

 \pm 450 Vdc

UNITS

DESIGN

CHART 3. TEST CONDITIONS AND CHARACTERISTICS LIMITS

SYMBOL

CHARACTERISTIC

Grid Emission Test Ef = 7.0 v.

Ef

6.3

volts

Time = 2 minutes
Capacitance

Plate Resistance

TEST CONDITIONS:

ELECTRODE:

All Tubes are Stabilized for 45 Hours Under Test Conditions and 2 G. Vibration at 30 Cps. Prior to 100% Testing.

MIN.

CHARACTERISTIC	SYMBOL	MIN.	CENTER	MAX.	UNITS
PRODUCTION TESTS					
Heater Current	lf .	560	600	640	mA
Heater-Cathode Leakage	lhk		T -	± 25	vAdc
Grid Current	lc1 -	_	_	0.5	vAdc
Plate Current	lb	33	45	57	m Ad c
Screen Current	Ic2	0	3.0	7.5	mAdc
Transconductance	Sm	3000	4100	5200	umhos
Power Output Ef == 5.7 v,	△ Po	_	_	15%	
Power Output	Po	3.6	45		watts
Cut off Plate Current (Ecl = - 60 Vdc)	lb			200	uAdc
Short and Continuity					
A. F. Noise					
DESIGN TESTS					
Vibration: 25 cps., 2.5 G. Ec1 = -25 v. D.C. Rp = 2,000 ohms Eb	Ер	-	_	150	mVac

kl

(gp

Cin

Cout

Rp

ЕЬ

250 Vdc

1.2

7.0

4.0

32,000

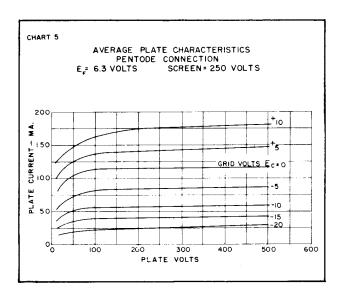
Ec2

250 Vdc

1.45

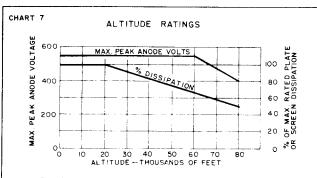
8.5

5.3


Ecl

-12.5 Vdc

CHART 4. SPECIAL TESTS


In addition to the production and design tests shown in Chart 3 other tests are performed on a sampling basis to assure a high outgoing quality level. See below.

TEST	CONDITIONS	3,000 On-Off Cycles	
Heater Cycling Life Test	On 2½ Min. Off 2½ Min. Ef = 7.5 Ehk = 300 Vac		
High Temp. Life Test	Under ''Test Conditions'' Bulb Temp. 300°C	1,000 Hours	
Life "Expectancy" Test	Under ''Test Conditions''	10,000 Hours	
High Level Fatigue Test	50G—Shock Excitation 18/sec. rep. rate	100 Hours	
Shock	500	20 Impacts	
Altitude Test	60,000 Feet	5 Minutes	
Glass Strain Test	Bailing Water to Ice Water	3 Minutes in Each	
Mount Inspection	100% Test-Microscopic Inspection of 30 Possible Trouble Points		

MINIATURE BEAM POWER AMPLIFIER

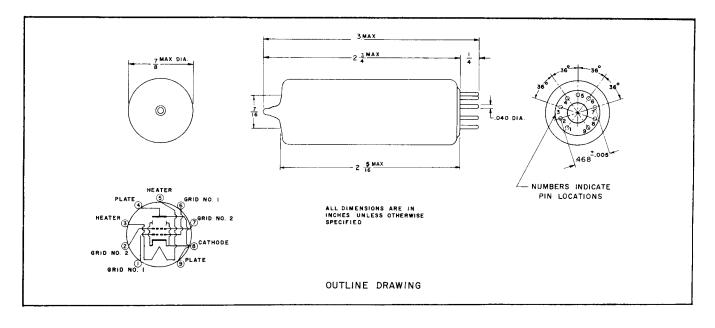
THIS CHART IS INCLUDED AS AN ILLUSTRATION OF THE AMOUNT OF DISSIPATION DERATING NECESSARY IN A SPECIFIC APPLICATION TO AVOID EXCEEDING THE MAXIMUM BULB TEMPERATURE EACH APPLICATION SHOULD BE CHECKED TO DETERMINE THAT THE MAXIMUM BULB TEMPERATURE IS NOT EXCEEDED. EITHER DERATING OR COOLING OR BOTH MAY BE NECESSARY

CRITERIA FOR DERATING FOLLOWS:

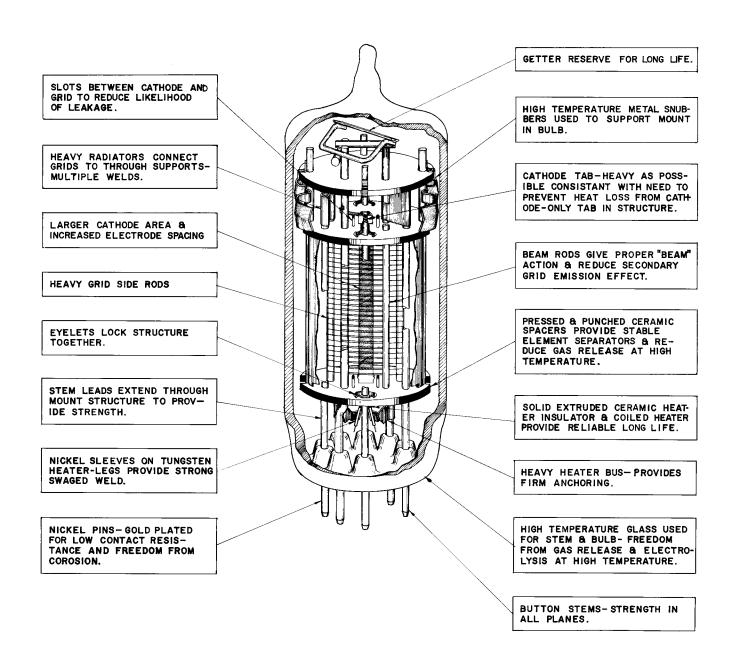
- VOLTAGE DERATING—TO KEEP BELOW BASE PIN ARC OVER POINT.
- 2. DISSIPATION DERATING -- TO KEEP BULB TEMPER-ATURE BELOW MAXIMUM RATING.

CHART 8. EFFECT ON LIFE OF INCREASED RATINGS

See also Application Notes	OPERATING CONDITIONS		
RATING OR CHARACTERISTIC	CONSERVATIVE	TYPICAL	MAXIMUM
Heater Voltage	6.3 V ± 2%	6.3 V ± 5%	6.3 V ± 10%
Plate Voltage	200 Vdc	250 Vdc	300 Vdc
Screen Voltage	200 Vdc	250 Vdc	275 Vdc
Peak Plate Voltage	400 v	500 v	550 v
Plate Current (Av.)	25 mA	40 mA	45 mA
Screen Current (Av.)	3 mA	4 mA	6 mA
Cathode Current (Peak)	50 mA	65 mA	100 mA
H-K Voltage	200 V	300 V	450 V
Grid Resistance	25,000 ohms	75,000 ohms	100,000 ohms
Bulb Temperature	200°C	250°C	300°C
Altitude	0-20,000'	60,000′	80,000′
Vibration	2 G	5 G	10 G
LIFE EXPECTANCY	MUMIXAM	HIGH	MEDIUM


APPLICATION NOTES

Special attention should be given to the temperatures at which the tubes are to be operated. Reliability will be seriously impaired if maximum bulb temperature is exceeded. The life expectancy will be reduced if conditions other than those specified for life test are imposed on the tube and will be reduced appreciably if absolute maximum ratings are exceeded. Both reliability and performance will be jeopardized if filament voltage ratings are exceeded. Life and reliability of performance are directly related to the degree that regulation of the heater voltage is maintained at its center rated value.


This tube is constructed using nonex glass and thus can withstand higher ambient temperatures in operation. However, the bulb temperature should never exceed 300°C at its hottest point and cooling should be employed if necessitated by the additive effects of operation at high altitudes and high dissipation simultaneously or by other sources of heat in the equipment. The altitude rating chart shows the correct voltage derating necessary for various altitudes. However, the dissipation derating is only approximate and must be measured for each application because of the additive effects mentioned above.

When used with A.C. on plate and screen with an inductive load such as in servo discriminator circuits, sufficient unshunted resistance in series with the screen should be used to avoid damage to the tube during that portion of the cycle when the plate may be negative with respect to the screen.

Chart 8 is presented to emphasize the dangers of operating simultaneously at or near all maxima. In general, the effect on life of operation at increased ratings is additive and cumulative. Interpolation within this chart will give the designer a general idea of the life expectancy and reliability of his application. Each proposed application should be life tested under maximum environmental conditions in order to check that the design gives the desired reliability. When conservatively used this tube has a life expectancy of 10,000 hours.

STRUCTURAL FEATURES OF 6094 PROVIDE HIGH RELIABILITY AND LONG LIFE.

