DESCRIPTION

The μ A747 is a pair of high performance monolithic operational amplifiers constructed on a single silicon chip. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of "latch-up" make the μ A747 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications. The μ A747 is short-circuit protected and requires no external components for frequency compensation. The internal 6 db/octave roll-off insures stability in closed loop applications. For single amplifier performance, see μA741 data sheet.

PEATURES

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT-CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL
- VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH UP

ABSOLUTE MAXIMUM RATINGS

Supply Voltage μA747		+22V		
μ Α747 C		+18V		
Internal Power Dissipation (Note 1) N	letal Can	500 mW		
D	ΝP	670 mW		
Differential Input Voltage		+30V		
Input Voltage (Note 2)		+15V		
Voltage between Offset Null and V		+0.5V		
Storage Temperature Range	-65 ⁰ C t	to +155 ⁰ C		
Operating Temperature Range µA747	-55 ⁰ C t	to +125 ⁰ C		
μ A747 0	c ooc	to +70 ^o C		
Lead Temperature (Soldering 60 second	(st	300°C		
Output Short Circuit Duration (Note 3))	Indefinite		

LINEAR INTEGRATED CIRCUITS

PIN CONFIGURATION

HOUIVALENT CIRCUIT (Each Side)

111 C1RICAL CHARACTERISTICS (V_S = ±15 V, T_A = 25°C unless otherwise specified)

PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage	$R_S \leq 10 \text{ k}\Omega$		1.0		m∨
μΑ747			5.0		m∨
μΑ747C			6.0		m∨
Input Offset Current			20	200	n A
Input Bias Current			80	500	nA
Input Resistance		0.3	2.0		MΩ
Input Capacitance Offset Voltage Adjustment Range			1,4 <u>+</u> 15		pF mV
Large-Signal Voltage Gain	$R_L \ge 2K\Omega, V_{out} = \pm 10V$		200,000	1	
	L = 2.000, out 2.00	50,000	200,000		
μΑ747 μΑ747C		25,000		l	
Output Resistance	1	25,000	75		Ω
Output Short-Circuit Current			25		mA
Supply Current			1.7	2.8	mA
Power Consumption			50	85	mW
Transient Response (unity gain)	V _{in} = 20 mV, R _L =				
	2kΩ, C ₁ ≤ 100 pF	1		1	
Risetime	-	1	0.3		μS
Overshoot			5.0		%
Slew Rate	$R_L \ge 2k\Omega$		0.5		V/μS
Channel Separation		}	120		dB
	μΑ747			L	
ne following specifications apply for -55 $^{\circ}$ C \leq T $_{A}$:					
Input Offset Valtage	$R_S \le 10k\Omega$		1.0	6.0	mV
Input Offset Current	T _A = +125°C		7.0	200	nA
input Offset Current		1			1
	T _A = .55°C	1	85	500	nA
Input Bias Current	T _A = +125°C	Į.	0.03	0.5	μΑ
	T _A = -55°C		0.3	1.5	μА
Input Voltage Range	<u>^</u>	<u>+</u> 12	<u>+</u> 13	ļ	v
Common Mode Rejection Ratio	R _S ≤ 10kΩ	70	90	l	dB
Supply Voltage Rejection Ratio	R _S ≤ 10kΩ	l	30	150	μν/ν
Large-Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{out} = \pm 10V$	25,000			J
		· ·		1	V
Output Voltage Swing	R _L ≥ 10kΩ	±12	±14		\
	R _L ≥ 2kΩ	±10	<u>+</u> 13		V
Supply Current	T _A = +125°C		1.5	2.5	mA
	τ _A = -55°C		2.0	3.3	mA
Power Consumption	T _A = +125°C	ļ .	45	75	mW
rower consumption	A - 1125 C	1		1	
	T _A = -55°C		60	100	mW
ne following specifications apply for $0^{\circ}C \leq T_{A} \leq$	μ Α747C +70 ^o c				
Input Offset Voltage			1.0	7.5	mV
· •	R _S ≤ 10kΩ			Į.	l
Input Offset Current		1	7.0	300	nA uA
Input Bias Current Input Voltage Range		<u>+</u> 12	0.03 ±13	0.8	μΑ V
Common Mode Rejection Ratio	$R_S \leq 10k\Omega$	70	90		dB
		, ~	30	150	μν/ν
Supply Voltage Rejection Ratio	R _S ≤10kΩ		30	'50	μνιν
Large-Signal Voltage Gain	$R_{L} \ge 2k\Omega_{i}V_{out} = \pm 10V$	15,000			
Output Voltage Swing	R _L ≥ 10kΩ	<u>+</u> 12	<u>+</u> 14	1	V
	R ₁ ≥ 2kΩ	<u>±</u> 10	<u>+</u> 13		V
Supply Current		_	2.0	3.3	mA.
Power Consumption	1	1	60	100	mW
· •······•	1				ĺ

NOTES:

- Rating applied to ambient temperatures up to 70°C ambient derate linearly at 6.3 mW/°C for the Metal Can and 8.3 mW/°C for the Ceramic DIP package.
- 2. For supply voltages less than +15V, the absolute maximum input voltage is equal to the supply voltage.
- Short circuit may be to ground or either supply. Military rating applies to +125°C case temperature or +60°C ambient temperature for each side.

MPICAL CHARACTERISTIC CURVES

TYPICAL CHARACTERISTIC CURVES (Cont'd.)

TYPICAL CHARACTERISTIC CURVES (Cont'd.)

