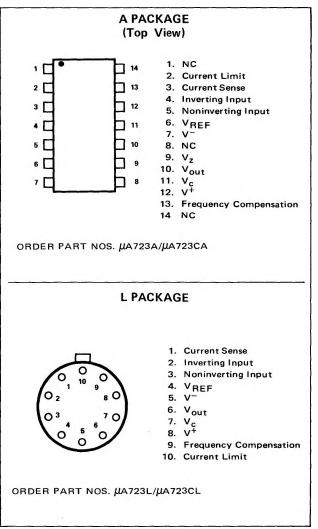

DESCRIPTION

The μ A723 is a Monolithic Precision Voltage Regulator capable of operation in positive or negative supplies as a series, shunt, switching or floating regulator. The μ A723 contains a temperature compensated reference amplifier, error amplifier, series pass transistor, and current limiter, with access to remote shutdown.

FEATURES


- POSITIVE OR NEGATIVE SUPPLY OPERATION
- SERIES, SHUNT, SWITCHING OR FLOATING **OPERATION**
- .01% LINE AND LOAD REGULATION
- OUTPUT VOLTAGE ADJUSTABLE FROM 2 TO 37 **VOLTS**
- OUTPUT CURRENT TO 150mA WITHOUT EX-**TERNAL PASS TRANSISTOR**

EQUIVALENT CIRCUIT

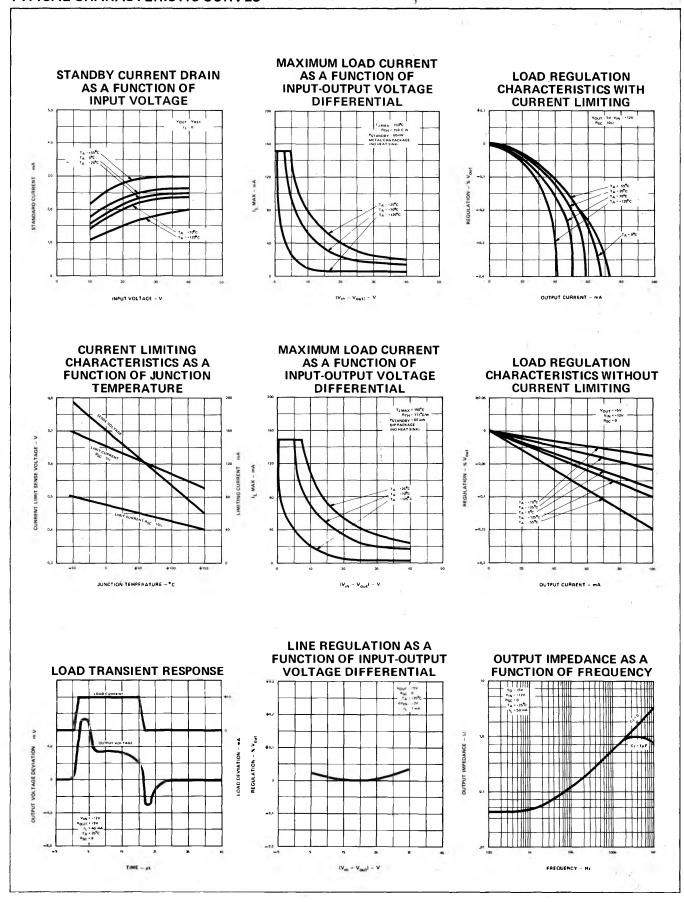
LINEAR INTEGRATED CIRCUITS

PIN CONFIGURATION

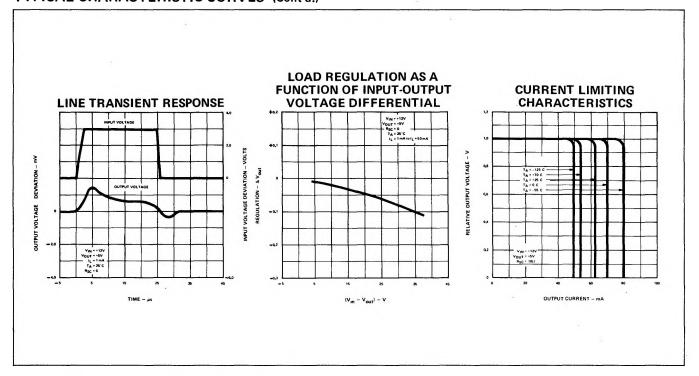
ABSOLUTE MAXIMUM RATINGS

ADSOLUTE MAX	INION NATING	•
	μΑ723	μA723C
Pulse Voltage from		
V^{+} to V^{-} (50ms)	50V	
Continuous Voltage from V ⁺ to V ⁻ 40V		40V
Input-Output Voltage	•	
Differential	40V	40V
Maximum Output Cu	rrent 150mA	150mA
Current from V _{RFF}	15mA	
Current from V _Z		25mA
Internal Power		
Dissipation (Note 1)	800mW	800mW
Operating Temperatur	re	
Range	-55 to +125°C	0 to 70°C
Storage Temperature		- 1
Range	-65°C to +150°C	-65°C to +150°C
Lead Temperature	300°C	300°C

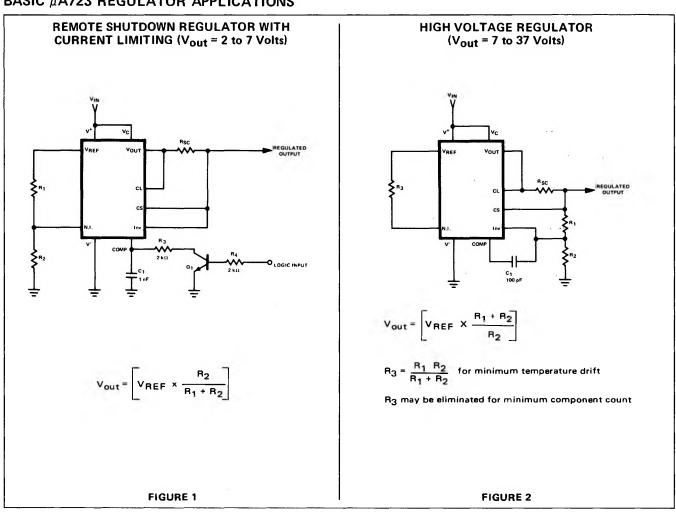
SIGNETICS ■ µA723/723C — PRECISION VOLTAGE REGULATOR

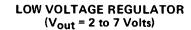

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified — Note 1)

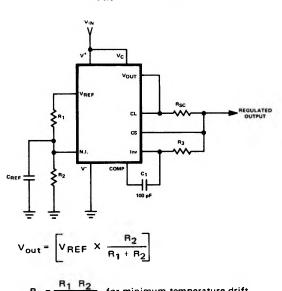
X UNITS	CONDITIONS
A723C	
% V _{out}	V _{in} = 12V to V _{in} = 15V V _{in} = 12V to V _{in} = 40V
2 % V _{out} dB dB	I _L = 1mA to I _L = 50mA f = 50 Hz to 10 kHz, C _{REF} = 0 f = 50 Hz to 10 kHz, C _{REF} = 5μF
mA V μV rms μV rms	R _{SC} = 10Ω, V _{Out} = 0 BW = 100 Hz to 10 kHz, C _{REF} = 0 BW = 100 Hz to 10 kHz, C _{REF} = 5μF
%/1000 hrs. mA V V V	1 _L = 0, V _{in} = 30V
3 % V _{out} 6 % V _{out} 015 %/°C	V _{in} = 12V to V _{in} = 15V I _L = 1mA to I _L = 50mA
μΑ723	
1 %V _{out} 2 %V _{out}	V _{in} = 12V to V _{in} = 15V V _{in} = 12V to V _{in} =40V
15 %V _{out} dB dB	I _L = 1mA to I _L = 50mA f = 50 Hz to 10 kHz, C _{REF} = 0 f = 50 Hz to 10 kHz, C _{REF} = 5μF
mA V μV rms μV rms	R _{SC} = 10Ω, V _{out} = 0 BW = 100 Hz to 10 kHz, C _{REF} = 0 BW = 100 Hz to 10 kHz, C _{REF} = 5μF
%/1000 hrs mA V V V	I _L = 0, V _{in} = 30V
3 % V _{out} 6 % V _{out}	V _{in} = 12V to V _{in} = 15V I _L = 1mA to I _L = 50mA
1	


NOTES

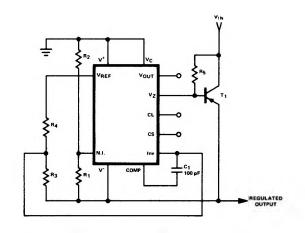
- Unless otherwise specified, T_A = 25°C, V_{in} = V+ = V_c = 12V, V−= 0V, V_{out} = 5V, I_L = 1mA, R_{sc} = 0, C₁ = 100pF, C_{REF} = 0 and divider impedance as seen by error amplifier ≤ 10kΩ when connected as shown in Figure 3.
- The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.


TYPICAL CHARACTERISTIC CURVES


TYPICAL CHARACTERISTIC CURVES (Cont'd.)

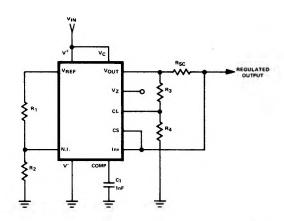


BASIC μ A723 REGULATOR APPLICATIONS


BASIC µA723 REGULATOR APPLICATIONS (Cont'd.)

$$R_3 = \frac{R_1 R_2}{R_2 + R_2}$$
 for minimum temperature drift

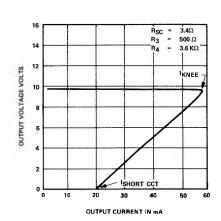
NEGATIVE VOLTAGE REGULATOR



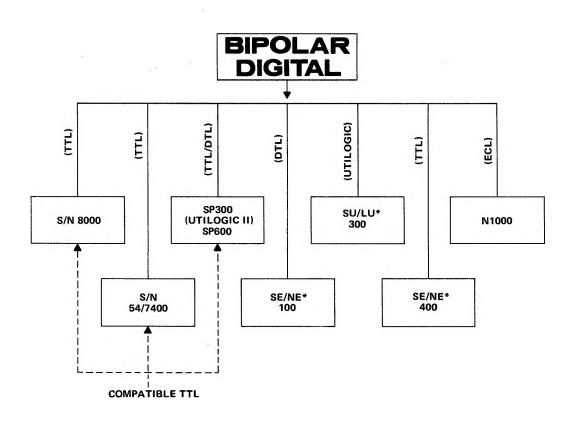
$$V_{out} = \begin{bmatrix} V_{REF} \\ 2 \end{bmatrix} \times \frac{R_1 + R_2}{R_1}$$
 ; $R_3 = R_4$

FIGURE 3

FIGURE 4


FOLDBACK CURRENT LIMITING REGULATOR (Vout = 2 to 7 Volts)

I_{KNEE} =
$$\begin{bmatrix} V_{\text{out}} & R_3 \\ R_{\text{sc}} & R_4 \end{bmatrix}$$
 + $\frac{V_{\text{SENSE}} (R_3 + R_4)}{R_{\text{sc}} & R_4}$


$$V_{\text{out}} = \left[V_{\text{REF}} \times \frac{R_1 + R_2}{R_2} \right]$$

ISHORT CKT =
$$\begin{bmatrix} V_{SENSE} \\ R_{SC} \end{bmatrix}$$
 $\times \frac{R_3 + R_4}{R_4}$

$$\frac{R_4}{R_3} = \frac{V_{OUT} I_{SC}}{V_{SENSE}(I_{KVEE} I_{SHORTCCT})} -1$$

$$R_{SC} = \frac{V_{SENSE}}{I_{SC}} \left[1 + \frac{R_3}{R_4} \right]$$

*NOTE: Information pertaining to these Signetics series product lines may be obtained by contacting your local sales representative.

8000 SERIES

The concept of cross-family compatibility in integrated circuits was born in 1966 when Signetics introduced Designer's Choice Logic (DCL). This family consists of the following compatible sub-families:

8100	Special purpose sub-systems.
8200	Integrated monolithic sub-systems (MSI).
8400	Offers DTL logic flexibility at lower power consumption and higher fan-out than any other DTL family.
8800	The classical high level TTL circuit design is utilized to provide low propagation delays and high noise immunity.
8H00	A higher speed version of the 8800.
8T00	A group of interface elements which includes voltage level translators, line drivers and receivers, and Display (Nixie and Seven Segment) Drivers.

8000 series devices are available in military and commercial temperature ranges and a wide variety of package types.