

STEREO / BRIDGE AMPLIFIER WITH CLIPPING DETECTOR

ADVANCE DATA

Main features:

- VERY FEW EXTERNAL COMPONENTS
- NO BOUCHEROT CELLS
- NO BOOTSTRAP CAPACITORS
- HIGH OUTPUT POWER
- NO SWITCH ON/OFF NOISE
- VERY LOW STAND-BY CURRENT
- FIXED GAIN
- PROGRAMMABLE TURN-ON DELAY
- CLIPPING DETECTION

Protections:

- OUTPUT AC-DC SHORT CIRCUIT TO GROUND AND TO SUPPLY VOLTAGE
- VERY INDUCTIVE LOADS
- OVERRATING CHIP TEMPERATURE
- LOAD DUMP VOLTAGE
- FORTUITOUS OPEN GROUND

The TDA7360 is a new technology class AB Audio Power Amplifier in Multiwatt package designed for car radio applications. Thanks to the fully complementary PNP/NPN output configuration the high power performances of the TDA7360 are obtained without bootstrap capacitors.

A delayed turn-on mute circuit eliminates audible on/off noise, and a novel short circuit protection system prevents spurious intervention with highly inductive loads.

The device provides a circuit for the detection of clipping in the output stages. The output, an open collector, is able to drive systems with automatic volume control.

APPLICATION CIRCUIT (BRIDGE)

ABSOLUTE MAXIMUM RATINGS

Vs	Operating supply voltage	18	V
Vs	DC supply voltage	28	V
Vs	Peak supply voltage (for $t = 50 \text{ ms}$)	40	V
I _o	I_{OUT} peak (non rep. t = 100 μ s)	4.5	Α
I _o	I _{OUT} peak (rep. freq. > 10 Hz)	3.5	Α
P _{tot}	Power dissipation at T _{case} = 80°C	40	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

R _{th J-case} Thermal resistance junction-case max 1.8 °C/M	R _{th j-case}	Thermal resistance junction-case	max	1.8	°C/W
--	------------------------	----------------------------------	-----	-----	------

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{amb} = 25$ °C, $V_s = 14.4$ V, f = 1 KHz, unless otherwise specified)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage		8		18	V
Id	Total quiescent drain current	stereo configuration		60		mA
ASB	Stand-by attenuation		60	80		dB
I _{SB}	Stand-by current				100	μА
Ico	Clip detector current average	d = 1%		-1		mA
dt _{co}	Distortion threshold for Clip Detect. output			0.5		%

STEREO

Po	Output power (each channel)	d = 10%	$R_{L} = 1.6\Omega$ $R_{L} = 2 \Omega$ $R_{L} = 3.2\Omega$ $R_{L} = 4 \Omega$	7	12 11 8 6.5		w w w
d	Distortion	f = 1 KHz 4Ω 100 mW to 4 W			0.05		%
SVR	Supply voltage rejection	R _s = 0 to 10 KS f = 100 Hz	2		55		dB
СТ	Crosstalk	f = 1 KHz f = 10 KHz			60 55		dB dB
Ri	Input resistance				50		ΚΩ
G _v	Voltage gain				20		dB
G _v	Voltage gain match.					1	dB
Ein	Input noise voltage	22 Hz to 22 KH	$R_g = 50\Omega$ $R_g = 10K\Omega$		3 3.5		μV μV

BRIDGE

vos	Output offset voltage				250	mV
Po	Output power	d = 10% R _L = 4 Ω R _L = 3.2 Ω	16	20 22		W
		d = 0.5% R _L = 4 Ω		18		w
d	Distortion	R _L = 4 Ω f = 1 KHz P _O = 0.1 to 10W		0.05		%
SVR	Supply voltage rejection	R _s = 0 to 10 KΩ f = 300 Hz to 3.5 KHz		55		dB
Ri	Input resistance			50		ΚΩ
G _v	Voltage gain			26		dB
Ein	Input noise voltage	22Hz to 22KHz $R_g = 50\Omega$ $R_g = 10K\Omega$		6 7		μV μV

APPLICATION INFORMATION

The TDA7360 is equipped with an internal circuit able to detect the output stage saturation providing a proper current sinking into a proper open collector out. (pin 2) when a certain dis-

tortion level is reached on each output.
This particular function allows compression facility whenever the amplifier is overdriven, obtaining high quality sound at all listening levels.

Fig. 1 - Dual channel distortion threshold detector

Fig. 2 - Output from the clipping detector Pin, versus signal distortion

Fig. 3 - Stereo test and application circuit

Fig. 4 - P.C. and layout (STEREO) of the Fig. 3 (1:1 scale)

Fig. 5 - Bridge test and application circuit

Fig. 6 - P.C. and layout (BRIDGE) of the Fig. 5 (1:1 scale)

