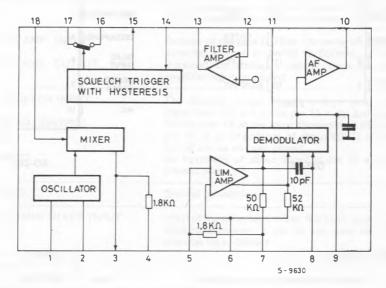

LOW VOLTAGE NBFM IF SYSTEM

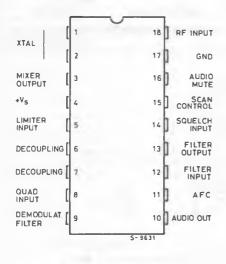
- OPERATION FROM 1.8V TO 9V
- LOW DRAIN CURRENT (4mA, V_s = 4V)
- HIGH SENSITIVITY (-3dB INPUT LIMITING AT 3μV)
- 8μV INPUT FOR 20dB S/N
- AFC OUTPUT
- LOW EXTERNAL FAIR COUNT

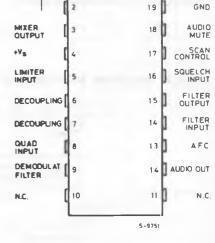

The TDA7359 is a low-power narrow band FM IF demodulation system operable to less than 2V supply voltage.

The device includes Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Op. Amp., Squelch, Scan Control and Mute Switch.

The TDA7359 is designed for use in NBFM dual conversion communication equipments using a 455KHz ceramic filter like cordless telephones, walkie-talkies, scan receivers, etc.

BLOCK DIAGRAM (PIN. NUMBERS are for DIP-18)




ABSOLUTE MAXIMUM RATINGS

V,	Supply voltage	9	V
V _I	RF input voltage (pin 18)	1	V_{rms}
V ₈	Detector input voltage	1	V_{PP}
V ₁₄	Mute function voltage	-0.5 to 5	V
Top	Operating ambient temperature	0 to 70	°C
T	Junction temperature	150	°C
T _{stg}	Storage temperature	-65 to 150	°C

CONNECTION DIAGRAMS

(Top view)

XTAL

20

RE INPUT

DIP-18

SO-20L

THERMAL DATA			DIP-18	SO-20L	
R _{th J-amb}	Thermal resistance junction-ambient	max	100°C/W	200°C/W	

PIN FUNCTION (DIP-18)

N°	NAME	FUNCTION				
1-2	XTAL OSCILLATOR	Connections for the Colpitts XTAL oscillator. The XTAL may be replaced by an inductor (see fig. 5) if the application does not require high stability.				
3	MIXER OUT	The Mixer is double balanced to reduce spurious products. The output impedance is $1.8 \mathrm{K}\Omega$ to match the input impedance of a 455KHz ceramic filter.				
4	SUPPLY VOLTAGE	Must be well decoupled with a 100nF ceramic capacitor.				
5	IF LIMITER INPUT	Input pin of the six stages amplifier with about 50 μ limiting sensitivity and 1.8K Ω input impedance. The output is connected to the external quadrature conjunction (pin 8) via an internal 10pF capacitor.				
6-7	DECOUPLING	Good quality 100nF ceramic capacitors and a suitable layout are important.				
8	QUADRATURE COIL	A quadrature detector is used to demodulate the 455KHFM signal. The Q of the quad coil has direct effect output level and distortion (see fig. 6). For proper ope ation the voltage should be 100mV _{rms} .				
10	AUDIO OUTPUT	The Audio signal after detection and deemphasis is buffered by an internal emitter follower.				
11	AFC OUT	AFC output, with high gain and high output impedance. If not needed, it should be grounded or connected to pin 9 (to double the recovered audio).				
12	OP AMP. INPUT	Because of the low DC bias, the swing on the operational				
13	OP AMP. OUTPUT	amplifier output is limited to 550mV _{rms} . This can be increased by adding a resistor from the operational amplifier input to ground.				
14	SQUELCH INPUT	The Squelch trigger circuit with a low bias on the				
15	SCAN CONTROL	input (pin 14) will force pin 15 high; and pin 16 Lot Pulling pin 14 above mute threshold (0.65V) will for pin 15 to an impedance of about $60 \mathrm{K}\Omega$ to ground ar pin 16 will be an open circuit. An hysteresis of about $50 \mathrm{mV}$ at pin 12 will effective prevent jitter.				
16	MUTE					
17	GND	Ground connection.				
18	10.7MHz MIXER INPUT	Input of the wide-band mixer. Normally used as 10.7MHz/455KHz converter, it can be also used with input frequencies up to 60MHz.				

ELECTRICAL CHARACTERISTICS ($V_s = 4V$; $f_o = 10.7 MHz$; $f = \pm 3 KHz$; $f_m = 1 KHz$; $T_{amb} = 25^{\circ}C$; unless otherwise noted)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage range		1.8	4	9	V
Is	Supply current	Squeich OFF Squeich ON		3.8 4.7		mA
Vi	Input quieting voltage	S/N = 20dB		8		μV
V _I	Input limiting voltage	-3dB limiting		3		μV
Vo	Recovered audio output	V _i = 10mV		150		mV _{rms}
V ₁₀	Detector output voltage			1.5		V _{DC}
R ₁₀	Detector output impedance			400		Ω
	Detector center frequency slope			150		mV/KHz
G _v	Operating amplifier gain	$f = 10KHz$ $G_V = V_{13}/V_{12}$	40	55		dB
V ₁₃	Operating amplifier output voltage			1.5		VDC
IB	Op. Amp. input bias current	Pin 10		20		nA
V _T	Trigger hysteresis			50		mV
Rm	Mute switching impedance	LOW		50		Ω
		HIGH		10		MΩ
V ₁₅	Scan voltage	pin 14 HIGH (2V) pin 14 LOW (0V)	3.0	0 3.4	0.5	V _{DC}
G _c	Mixer converter gain			30		dB
R ₁	Input resistance			3.3		ΚΩ
C _i	Input capacitance			2.2		pF

Fig. 2 - Test circuit

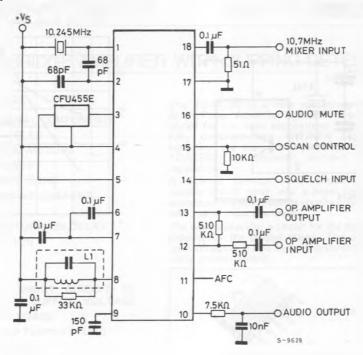


Fig. 3 - Supply current vs. supply voltage

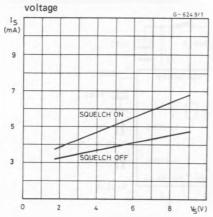


Fig. 4 - FM IF characteristics

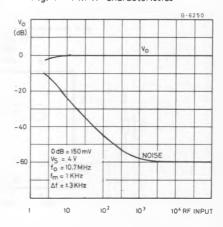


Fig. 5 - Colpitts XTAL oscillator

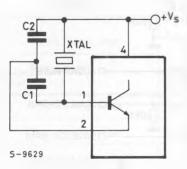
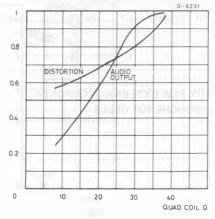



Fig. 6 - Effect of quadrature coil "Q" on audio level and distortion

