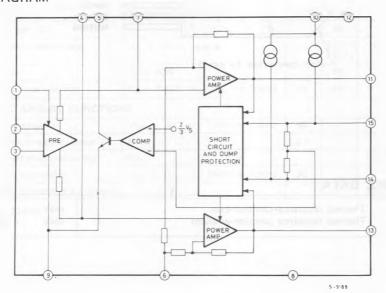

22W FRONT REAR OR BRIDGE FULLY PROTECTED CAR RADIO AMPLIFIER

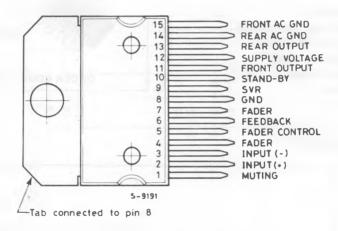
- HIGH OUTPUT POWER
- POP FREE SWITCHING
- \bullet SHORT CIRCUIT PROTECTIONS: R_L SHORT OUT TO GROUND OUT TO V_S
- MUTING μP COMPATIBLE
- VERY LOW CONSUMTION STANDBY
- PROGRAMMABLE TURN ON DELAY
- LOW DISTORTION AND LOW NOISE
- DIFFERENTIAL INPUT


Other Protections:

- LOAD DUMP VOLTAGE SURGE
- LOUDSPEAKER DC CURRENT
- VFRY INDUCTIVE LOAD
- OVERRATING TEMPERATURE
- OPEN GROUND

The TDA7255 a class B dual fully protected power amplifier designed for car radio applications. The device can be switched from Front-Rear to Bridge configuration by changing only the loudspeaker connection. An input fader for Front-Rear control is available. A high current capability allows to drive low impedance loads (up to 1.6Ω).

BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

V.	Operating supply voltage	18	V
V.	DC supply voltage	28	V
V.	Peak supply voltage (for 50ms)	40	V
10	Output peak current (non repetitive $t = 0.1 ms$)	4.5	Α
I ₀	Output peak current (repetitive $f \ge 10$ Hz)	4	Α
P _{tot}	Power dissipation at T _{case} = 60°C	30	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C
		1	

CONNECTION DIAGRAM

(Top view)

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case Thermal resistance junction-ambient	max	3	°C/W
R _{th j-amb}		max	40	°C/W

ELECTRICAL CHARACTERISTICS ($V_s = 14.4V$, $R_L = 4\Omega$, f = 1KHz, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

	Paremeter	Test Conditions	Mia.	Тур.	Max.	Unit
V_s	Supply voltage		8		18	V
Id	Total quiescent drain current			80		mA
Ri	Input resistance			70		ΚΩ
Vi	Input saturation voltage		300			mV
Тј	Thermal shut down junction temperature			145		°C

FRONT REAR APPLICATIONS (Fig. 2)

Po	Output power	THD = 10% $R_{\perp} = 4\Omega$ $R_{\perp} = 2\Omega$ $R_{\perp} = 1.6\Omega$	5.5	6.5 11 12.5		W W
d	Distortion	P _O = 0.1W to 4W		0.05	0.5	%
G _v	Voltage gain			28		dB
eN	Input noise voltage	$H_G = 10K\Omega$		2.5(**)		μV μV
SVR	Supply voltage rejection	R _G = 100KΩ V _r = 1V f = 300Hz	36	45		dB
CMR	Common mode rejection			55		dB
77	Efficiency	$P_0 = 6.5W + 6.5W$		70		%

BRIDGE APPLICATION (Fig. 1)

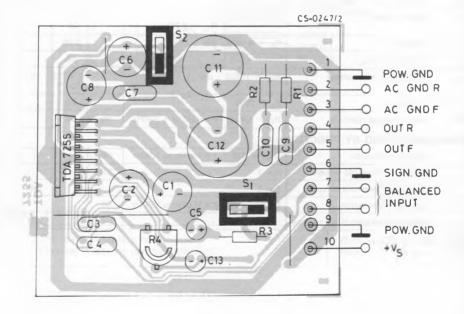
Vos	Output offset voltage				250	mV
Po	Output power	THD = 10% $R_L = 4\Omega$ $R_L = 3.2\Omega$	18	22 25		W
d	Distortion	P _o = 0.1W to 2W		0.05		%
G _v	Voltage gain (CL)			36		dB
eN	Total input noise voltage	$H_G = 10K\Omega$		2.5(**)	10	μV μV
η	Efficiency	P _o = 20W		66		%
SVR	Supply voltage rejection	$H_G = 10K\Omega$, $V_f = 1V$, $f = 300Hz$	45	58		dB

MUTING AND STAND-BY FUNCTIONS

Muting attenuation	V _{ref} = 1W	f = 100Hz to 10KHz	60		dB
Muting-on threshold voltage	Pin. 1		2.4		V
Muting-off threshold voltage	Pin. 1			8.0	V
Stand-by attenuation	V _{ref} = 1V	f = 100Hz to 10KHz	60		dB
Stand-by quiescent drain current				100	μА

^(**) B = 22Hz to 22KHz

^(*) B = curve A


Fig. 1 - Test and application circuit Fig. 2 - Test and application circuit (F/R amplifier) (Bridge amplifier) STAND-BY STAND BY 010F 100us 52 R1 2.2.0 R1 220 1104 10 AF FADER INPUT 47K.0 C13 . MUTE TDA7255 TDA7255 OLUF C11 1000µ 10K0 R3 5-9192/3 D1 2.2 A 2.2 0 1 220 UF T C10 1 220 UF 0.22 µF = 220µF = 220 µF

Two high impedance inputs available for balanced or unbalanced operation.

The fader function is automatically inserted in front/rear configuration and allows the distribution of the power between the front and the rear. An external potentiometer must be connected between pins 4 and 7 with the control terminal connected to pin 5 through a decoupling capacitor. In bridge applications the pins 4-5-7 must be left open.

Turn on delay. The output stages are muted during the turn on transient and start rising after the charge of the capacitor connected between pin 9 and ground. The capacitor also avoids pops during bridge F/R switching.

Fig. 3 - P.C. board and component layout of the circuits of Fig. 1 and 2 (1:1 scale)

FRONT/REAR CHARACTERISTICS

Fig. 4 - Quiescent drain current vs. supply voltage

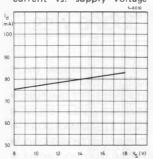


Fig. 5 - Quiescent output voltage vs. supply voltage

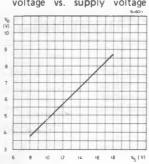


Fig. 6 - Output power vs. supply voltage

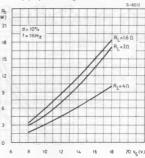


Fig. 7 - Distortion vs. frequency

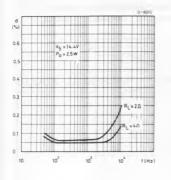


Fig. 8 - Supply voltage rejection vs. capacitor values (C2)

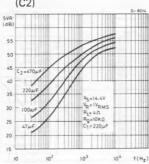


Fig. 9 - Supply voltage rejection vs. capacitor values

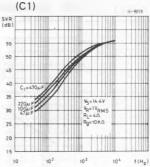


Fig. 10 - Output signal vs. fader control position

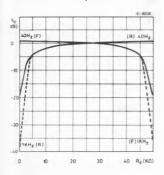


Fig. 11 - Power dissipation and efficiency vs. output

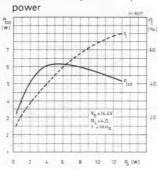


Fig. 12 - Power dissipation and efficiency vs. output

BRIDGE CHARACTERISTICS

Fig. 13 -- Output power vs. supply voltage

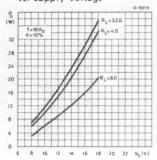


Fig. 14 - Distortion vs. frequency

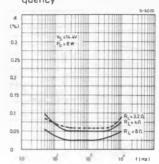


Fig. 15 - Supply voltage rejection vs. frequency

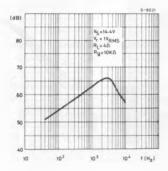
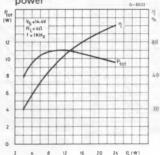



Fig. 16 - Power dissipation and efficiency vs. output power

