Signetics

TDA5040 Brushless DC Motor Driver

Objective Specification

Linear Products

DESCRIPTION

The TDA5040 is designed to operate as a single-phase brushless motor driver in a voltage range of 5 to 16V. Thus a two-phase motor requires two TDA5040Ts and a 3-phase motor will require 3 such devices.

The device contains an internal Hall sensor element for controlling commutation. Motor direction is controlled by logic inputs to C_1 and C_2 .

FEATURES

• Thermal protection

APPLICATIONS

• Brushless DC motors

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
8-Pin Plastic SO Package	0 to +70°C	TDA5040TD

BLOCK DIAGRAM

TDA5040

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	TEST CONDITIONS	RATING	TINU	
V _{CC}	Supply voltages Low power stages Output stage	Under resistance load	-0.5 to 16 -0.5 to 16	V V	
Vcc	Output stage	Under inductive load	0 to 15	V	
v _o	Voltage on output	With a maximum of 16V	-0.5 to V _{CC} +1	V	
C ₁ , C ₂	Voltage on inputs		-0.5 to 16	٧	
H _I , H _O	Voltage on Hall output		-0.5 to 16	٧	
± Io	Output current		1.24	Α	
T _{STG}	Storage temperature		-55 to +150	°C	
TJ	Junction temperature	Peak value up to 160°C during 5s	+ 150	°C	

December 1988 8-64

TDA5040

DC ELECTRICAL CHARACTERISTICS Unless otherwise noted: $5V \le V_{CC} \le 16V$, $-15^{\circ}C \le T_{A} \le 60^{\circ}C$.

OVMBOL	DADAMETER	TEAT AGNITIONS	LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	
Supply volta	age					
V _{CC}	Low power stage High power stage		5 0		16 15	V V
	t and trigger circuit			L	13	
MO	Offset	T	-15 10 ⁻³		+15 10-3	Tesla
M _H	Hysteresis	Using output Ho or Vo	2.5 10 ⁻³	4.5 10 ⁻³	6.5 10 ⁻³	Tesla
Hall output	H _o					
−IH _o H IH _o L	Output current High Output current Low	$V_p = 12V T_A = 25^{\circ}C$ $VH_0 \le V_p - 0.25V$ $0.7V \le VH_0 \le V_p - 0.25V$	10	15 15	20 20	μA μA
IHo/ΔΤ° IHo/ΔV _p	Temperature dependency Voltage dependency			0.15 4		%/°C %/V
Hall input H	li					
VH _{IH} VH _{IL}	Input level High Low Input switching level to drive	I _{HI} > 10μA - I _{HI} > 10μA	2.48	2.8	3.15	٧
VH _{IS}	Output V _O according to truth table	Referred to the calculated	TBD	0	TBD	mV
		switching level $\frac{V_{HIH} + V_{HIL}}{2}$				
	s C ₁ resp. C ₂					
VIL VIH I _{IL}	Input voltage Low Input voltage High Input current Low Input current High	V _c = 0.4V V _c = 16V	2 TBD	19	TBD 2	V V μΑ μΑ
Power outp	ut stage					
V _{OL} ΔV _{OL} /ΔΤ° V _{OH}	Output voltage Low Temperature dependency Output voltage High	I_0 = pulse of 1ms I_0 = 400mA duty cycle \leq 1/10 $-I_0$ = 500mA duty cycle \leq 1/10	V _{cc} - 1.35	1 -0.93 V _{CC} - 1.1	1.25	V mV/°C V
ΔV _{OH} /ΔT° lol lof -lof R _L	Temperature dependency Output current Low internally limited Output current float Output current float Load resistance (across Pins 4 and 5)	V _o = V _{cc} = 16V V _o = 0V, V _{cc} = 16V	500 6	+3.6	1200 1 1	mV/°C mA mA mA
Quiescent c	urrent		L		L	
l _p l _p + l _{CC}	Output Low or Float Output High	$I_0 = 0$, $V_p = V_{cc} = 16V$ $I_0 = 0$, $V_p = V_{cc} = 16V$		6 9	TBD TBD	mA
Thermal pro	otection					
T _{JSW-OFF} T _{JSW-ON}	Switch-off temperature Switch-on temperature		130 90		160 140	°C
T _{JSW}	Hysteresis		20	30	40	°C

TDA5040

8-66

TDA5040

THEORY OF OPERATION

 C_1 defines the motor rotation direction by connecting it to a high or low voltage level. A low voltage level on C_2 is a float command. Both C_1 and C_2 can be driven by a TTL, CMOS or LOCMOS circuit. Both input characteristics allow up to three inputs to be driven directly by one TTL, CMOS or LOCMOS

circuit (e.g., a common float command line for all three ICs in the motor).

The circuit includes a thermal protection which switches the output in the floating state when the chip exceeds the limiting temperature. A hysteresis on this protection avoids degradation of the IC during constant short-

circuit of the output. The output power current is limited by a current-limiter in the lower output stage.

A zener diode protects the lower output stage in case the supply voltage V_{CC} is disconnected and the output is inductively loaded. (See Block Diagram.)

TRUTH TABLE

INPUT					OUTPUT		
TJ	М	C ₂	C ₁	Hı	Ho	V _O	
L	N	н	Н	Н	Н	COMMON	
L	S	н	н	н	L	Н	
L	N	н	н	L	н	L	
L	s	н	Н	L	L	COMMON	
L	N	Н	L	н	Н	COMMON	
L	s	н	L	н	L	L	
l L	N	н	L	L	н	Н	
L	s	н	L	L	L	COMMON	

Remarks

 $T_J = "L"$: junction temp. < min. switch on temp.

M = "N": magnetic north above and south pole below the IC, magnetic field strength > max. offset + ½ max. hysteresis

M = "S": magnetic south above and north pole below the IC, magnetic field strength > max. offset + ½ max. hysteresis

Ho is H_I compatible

