Signetics # TDA5040 Brushless DC Motor Driver Objective Specification #### **Linear Products** #### DESCRIPTION The TDA5040 is designed to operate as a single-phase brushless motor driver in a voltage range of 5 to 16V. Thus a two-phase motor requires two TDA5040Ts and a 3-phase motor will require 3 such devices. The device contains an internal Hall sensor element for controlling commutation. Motor direction is controlled by logic inputs to C_1 and C_2 . #### **FEATURES** • Thermal protection #### **APPLICATIONS** • Brushless DC motors #### PIN CONFIGURATION #### **ORDERING INFORMATION** | DESCRIPTION | TEMPERATURE RANGE | ORDER CODE | |--------------------------|-------------------|------------| | 8-Pin Plastic SO Package | 0 to +70°C | TDA5040TD | #### **BLOCK DIAGRAM** **TDA5040** #### **ABSOLUTE MAXIMUM RATINGS** | SYMBOL | PARAMETER | TEST CONDITIONS | RATING | TINU | | |---------------------------------|---|----------------------------------|-------------------------------|----------|--| | V _{CC} | Supply voltages
Low power stages
Output stage | Under resistance load | -0.5 to 16
-0.5 to 16 | V
V | | | Vcc | Output stage | Under inductive load | 0 to 15 | V | | | v _o | Voltage on output | With a maximum of 16V | -0.5 to
V _{CC} +1 | V | | | C ₁ , C ₂ | Voltage on inputs | | -0.5 to 16 | ٧ | | | H _I , H _O | Voltage on Hall output | | -0.5 to 16 | ٧ | | | ± Io | Output current | | 1.24 | Α | | | T _{STG} | Storage temperature | | -55 to
+150 | °C | | | TJ | Junction temperature | Peak value up to 160°C during 5s | + 150 | °C | | December 1988 8-64 **TDA5040** #### DC ELECTRICAL CHARACTERISTICS Unless otherwise noted: $5V \le V_{CC} \le 16V$, $-15^{\circ}C \le T_{A} \le 60^{\circ}C$. | OVMBOL | DADAMETER | TEAT AGNITIONS | LIMITS | | | | |---|--|--|------------------------|-------------------------------------|----------------------|-------------------------| | SYMBOL | PARAMETER | TEST CONDITIONS | Min | Тур | Max | | | Supply volta | age | | | | | | | V _{CC} | Low power stage High power stage | | 5
0 | | 16
15 | V
V | | | t and trigger circuit | | | L | 13 | | | MO | Offset | T | -15 10 ⁻³ | | +15 10-3 | Tesla | | M _H | Hysteresis | Using output Ho or Vo | 2.5 10 ⁻³ | 4.5 10 ⁻³ | 6.5 10 ⁻³ | Tesla | | Hall output | H _o | | | | | | | −IH _o H
IH _o L | Output current High
Output current Low | $V_p = 12V T_A = 25^{\circ}C$
$VH_0 \le V_p - 0.25V$
$0.7V \le VH_0 \le V_p - 0.25V$ | 10 | 15
15 | 20
20 | μA
μA | | IHo/ΔΤ°
IHo/ΔV _p | Temperature dependency Voltage dependency | | | 0.15
4 | | %/°C
%/V | | Hall input H | li | | | | | | | VH _{IH}
VH _{IL} | Input level High Low Input switching level to drive | I _{HI} > 10μA
- I _{HI} > 10μA | 2.48 | 2.8 | 3.15 | ٧ | | VH _{IS} | Output V _O according to truth table | Referred to the calculated | TBD | 0 | TBD | mV | | | | switching level $\frac{V_{HIH} + V_{HIL}}{2}$ | | | | | | | s C ₁ resp. C ₂ | | | | | | | VIL
VIH
I _{IL} | Input voltage Low Input voltage High Input current Low Input current High | V _c = 0.4V
V _c = 16V | 2
TBD | 19 | TBD 2 | V
V
μΑ
μΑ | | Power outp | ut stage | | | | | | | V _{OL}
ΔV _{OL} /ΔΤ°
V _{OH} | Output voltage Low
Temperature dependency
Output voltage High | I_0 = pulse of 1ms
I_0 = 400mA duty cycle \leq 1/10
$-I_0$ = 500mA duty
cycle \leq 1/10 | V _{cc} - 1.35 | 1
-0.93
V _{CC} - 1.1 | 1.25 | V
mV/°C
V | | ΔV _{OH} /ΔT°
lol
lof
-lof
R _L | Temperature dependency Output current Low internally limited Output current float Output current float Load resistance (across Pins 4 and 5) | V _o = V _{cc} = 16V
V _o = 0V, V _{cc} = 16V | 500
6 | +3.6 | 1200
1
1 | mV/°C
mA
mA
mA | | Quiescent c | urrent | | L | | L | | | l _p
l _p + l _{CC} | Output Low or Float
Output High | $I_0 = 0$, $V_p = V_{cc} = 16V$
$I_0 = 0$, $V_p = V_{cc} = 16V$ | | 6
9 | TBD
TBD | mA | | Thermal pro | otection | | | | | | | T _{JSW-OFF}
T _{JSW-ON} | Switch-off temperature
Switch-on temperature | | 130
90 | | 160
140 | °C | | T _{JSW} | Hysteresis | | 20 | 30 | 40 | °C | # **TDA5040** 8-66 #### **TDA5040** #### THEORY OF OPERATION C_1 defines the motor rotation direction by connecting it to a high or low voltage level. A low voltage level on C_2 is a float command. Both C_1 and C_2 can be driven by a TTL, CMOS or LOCMOS circuit. Both input characteristics allow up to three inputs to be driven directly by one TTL, CMOS or LOCMOS circuit (e.g., a common float command line for all three ICs in the motor). The circuit includes a thermal protection which switches the output in the floating state when the chip exceeds the limiting temperature. A hysteresis on this protection avoids degradation of the IC during constant short- circuit of the output. The output power current is limited by a current-limiter in the lower output stage. A zener diode protects the lower output stage in case the supply voltage V_{CC} is disconnected and the output is inductively loaded. (See Block Diagram.) #### TRUTH TABLE | INPUT | | | | | OUTPUT | | | |-------|---|----------------|----------------|----|--------|----------------|--| | TJ | М | C ₂ | C ₁ | Hı | Ho | V _O | | | L | N | н | Н | Н | Н | COMMON | | | L | S | н | н | н | L | Н | | | L | N | н | н | L | н | L | | | L | s | н | Н | L | L | COMMON | | | L | N | Н | L | н | Н | COMMON | | | L | s | н | L | н | L | L | | | l L | N | н | L | L | н | Н | | | L | s | н | L | L | L | COMMON | | #### Remarks $T_J = "L"$: junction temp. < min. switch on temp. M = "N": magnetic north above and south pole below the IC, magnetic field strength > max. offset + ½ max. hysteresis M = "S": magnetic south above and north pole below the IC, magnetic field strength > max. offset + ½ max. hysteresis Ho is H_I compatible