

10+10W HIGH QUALITY STEREO AMPLIFIER

The TDA2009 is class AB dual Hi-Fi Audio power amplifier assembled in Multiwatt[®] package, specially designed for high quality stereo application as Hi-Fi and music centers. Its main features are:

- High output power (10 + 10W min. @ d = 0.5%)
- High current capability (up to 3.5A)
- Thermal overload protection
- Space and cost saving: very low number of external components and simple mounting thanks to the Multiwatt[®] package.

ABSOLUTE MAXIMUM RATINGS

Vs	Supply voltage	28	V
10	Output peak current (repetitive f ≥ 20Hz)	3.5	Α
10	Output peak current (non repetitive, $t = 100\mu s$)	4.5	Α
P _{tot}	Power dissipation at T _{case} = 90°C	20	W
T_{stg} , T_j	Storage and junction temperature	-40 to 150	°C

TEST CIRCUIT

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3	°C/W

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, T_{amb} = 25°C, V_s = 23V, G_v = 36 dB, unless otherwise specified)

	Parameters	Test co	onditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage			8		28	V
Vo	Quiescent output voltage	V _s = 23V			11		V
I _d	Total quiescent drain current	V _s = 23V			55	120	mA
Po	Output power (each channel)			10 5.5	11 6.5 6.5 4		w w w
d	Distortion (each channel)				0.05		%
СТ	Cross talk (°°°)	R _L = ∞	f = 1 KHz	50	65		dB
		R _g = 10 KΩ	f = 10 KHz	40	50		dB
Vi	Input saturation voltage (rms)			300			mV
Ri	Input resistance	f = 1 KHz non	inverting input	70	200		ΚΩ
fL	Low frequency roll off (-3 dB)	$R_L = 4\Omega$			20		Hz
f _H	High frequency roll off (-3 dB)				80		КН
G _v	Voltage gain (closed loop)	f = 1 KHz		35.5	36	36.5	dB
ΔG _v	Closed loop gain matching				0.5		dB
eN	Total input noise voltage	$R_g = 10 \text{ K}\Omega \text{ (°)}$ $R_g = 10 \text{ K}\Omega \text{ (°°)}$		_	1.5		μ∨
					2.5	8	μ∨
SVR	Supply voltage rejection (each channel)	R _Ω = 10 KΩ fripple = 100 Hz V _{ripple} = 0.5V		43	55		dB
TJ	Thermal shut-down junction temperature				145		°c

Fig. 1 - Test and application circuit ($G_v = 36 \text{ dB}$)

Fig. 2 - P.C. board and components layout of the circuit of fig. 1 (1:1 scale)

Fig. 3 - Output power vs. supply voltage

Fig. 4 - Output power vs. supply voltage

Fig. 5 - Distortion vs. out-

Fig. 6 - Distortion vs. frequency

Fig. 7 - Quiescent current vs. supply voltage

Fig. 8 - Supply voltage rejection vs. value of capacitor C3

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 10 - Total power dissipation an efficiency vs. out-

Fig. 11 – Total power dissipation and efficiency vs.

Fig. 12 - Cross-talk vs. fre-

Fig. 13 - Output power vs.

Fig. 14 - Output power vs. closed loop gain

APPLICATION INFORMATION

Fig. 15 - Simple short-circuit protection

Fig. 16 - Example of muting circuit

Fig. 17 - 10 + 10W stereo amplifier with tone balance and

Fig. 18 - Tone control response (circuit of fig. 17)

APPLICATION INFORMATION (continued)

Fig. 19 - High quality 10 + 20W two way amplifier for stereo music center (one channel only)

Fig. 20 - 18W bridge amplifier (d = 0.5%, $G_v = 40dB$)

Fig. 21 - P.C. board and components layout of the circuit of fig. 20 (1:1 scale)

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1 . Different values can be used; the following table can help the designer.

Component	Recomm. value	Purpose	Larger than	Smaller than
R1 and R3	1.2 ΚΩ		Increase of gain	Decrease of gain
R2 and R4	18 Ω	Close loop gain setting(*)	Decrease of gain	Increase of gain
R5 and R6	1 Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C1 and C2	2.2 μF	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise
C3	22 μF	Ripple rejection	Better SVR. Increase of the switch-on time	Degradation of SVR.
C6 and C7	220 μF	Feedback Input DC decoupling.		
C8 and C9	0.1 μF	Frequency stability.		Danger of oscillation.
C10 and C11	1000 μF to 2200 μF	Output DC decoupling.		Higher low-frequency cut-off.

^(*) The closed loop gain must be higher than 26dB

BUILD-IN PROTECTION SYSTEMS

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

- an overload on the output (even it is permanent), or an excessive ambient temperature can be easily withstood.
- 2) the heatsink can have a smaller factor of safety compared with that of a conventional

circuits. There is no device damage in the case of excessive junction temperature: all that happens is that P_o (and therefore P_{tot}) and I_d are reduced.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 22 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Fig. 22 - Maximum allowable power dissipation vs. ambient temperature

Fig. 23 - Output power vs. case temperature

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the MULTIWATT® package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between

the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.