

8W AUDIO AMPLIFIER

The TDA1908 is a monolithic integrated circuit in 12 lead quad in-line plastic package intended for low frequency power applications. The mounting is compatible with the old types TBA800, TBA810S, TCA830S and TCA940N. Its main features are:

- flexibility in use with a max output curent of 3A and an operating supply voltage range of 4V to 30V;
- protection against chip overtemperature;
- soft limiting in saturation conditions;
- low "switch-on" noise;

- low number of external components;
- high supply voltage rejection:
- very low noise.

ABSOLUTE MAXIMUM RATINGS

V
Α
Α
W
W
°C

APPLICATION CIRCUIT

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM

TEST CIRCUIT

* See fig. 12.

THERMAL DATA

R _{th J-tab}	Thermal resistance junction-tab Thermal resistance junction-ambient	max max	12 (°) 70	°C/W °C/W
"th j-amb	Thermal resistance junction-ambient	max	() / (C/VV

^(°) Obtained with tabs soldered to printed circuit board with min copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{amb} = 25$ °C, R_{th} (heatsink)= 8 °C/W, unless otherwise specified)

	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vs	Supply voltage		4		30	V
Vo	Quiescent output voltage	V _s = 4V V _s = 18V V _s = 30V	1.6 8.2 14.4	2.1 9.2 15.5	2.5 10.2 16.8	٧
d	Quiescent drain current	V _s = 4V V _s = 18V V _s = 30V		15 17.5 21	35	mA
V _{CEsat}	Output stage saturation voltage (each output transistor)	I _C = 1A I _C = 2.5A		0.5		V
Po	Output power	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 6.5 4.5	2.5 5.5 9 8 5.3		w

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test	condition	Min.	Тур.	Max	Unit
d	Harmonic distortion	V _s = 24V	$R_{\perp} = 4\Omega$ 50 mW to $1.5W$ $R_{\parallel} = 4\Omega$ 50 mW to $4W$ $R_{\parallel} = 16\Omega$ 50 mW to $3W$		0.1 0.1 0.1		%
VI	Input sensitivity	1 V. = 22V H	$ L = 4\Omega P_0 = 2.5W $ $ L = 4\Omega P_0 = 5.5W $ $ L = 4\Omega P_0 = 9W $ $ L = 8\Omega P_0 = 8W $ $ L = 16\Omega P_0 = 5.3W $		37 52 64 90 110		m∨
VI	Input saturation voltage (rms)	V _s = 9V V _s = 14V V _s = 18V V _s = 24V		0.8 1.3 1.8 2.4			V
Ri	Input resistance (pin 8)	f = 1 KHz		60	100		ΚΩ
Is	Drain current	f = 1 KHz V _s = 14V R V _c = 18V R V _c = 22V R V _s = 24V R	L= 4Ω P _o = 5.5W L= 4Ω P _o = 9W L= 8Ω P _o = 8W L= 16Ω P _o = 5.3W		570 730 500 310		mA
η	Efficiency		f = 1 KHz 4Ω P _O = 9W		72		%
BW	Small signal bandwidth (-3 dB)	V _s = 18V R	_= 4Ω P _o = 1W	40 to 40 000			Hz
G _v	Voltage gain (open loop)	f = 1 KHz			75		dB
G _v	Voltage gain (closed loop)	V _s = 18V f = 1 KHz	R _L = 4Ω P _o = 1W	39.5	40	40.5	dB
eN	Total input noise	(0)	$R_g = 50\Omega$ $R_g = 1K\Omega$ $R_g = 10 K\Omega$		1.2 1.3 1.5	4.0	μ∨
		(00)	$R_g = 50\Omega$ $R_g = 1K\Omega$ $R_g = 10K\Omega$		2.0 2.0 2.2	6.0	μV
S/N	Signal to noise ratio	$V_s = 18V$ $P_o = 9W$ $R_L = 4\Omega$	$R_g = 10K\Omega$ $R_g = 0 \qquad (\circ)$		92 94		dB
X		1, [- 425	$R_g = 10K\Omega$ (°°°)		88 90		dB
SVR	Supply voltage rejection	V _s = 18V f _{ripple} = 100	$R_L = 4\Omega$ Hz $R_g = 10K\Omega$	40	50		dB
T _{sd}	Thermal shut-down junction (*)				145		°C

(°) Weighting filter = curve A. (°°) Filter with noise bandwidth: 22 Hz to 22 KHz.

Fig. 1 - Quiescent output voltage vs. supply voltage

Fig. 2 - Quiescent drain current vs. supply voltage

Fig. 3 - Output power vs. supply voltage

Fig. 4 - Distortion vs. output power ($R_L = 16\Omega$)

Fig. 5 ~ Distortion vs. output power $(R_1 = 8\Omega)$

Fig. 6 - Distortion vs. output power $(R_L = 4\Omega)$

Fig. 7 - Distortion vs. frequency ($R_1 = 16\Omega$)

Fig. 8 - Distortion vs. frequency $(R_1 = 8\Omega)$

Fig. 9 - Distortion vs. frequency ($R_L = 4\Omega$)

Fig. 10 - Open loop frequency response

Fig. 11 - Output power vs. input voltage

Fig. 12 - Values of capacitor C_× versus gain and B_w

Fig. 13 - Supply voltage rejection vs. voltage gain

Fig. 14 - Supply voltage rejection vs. source resistance

Fig. 15 - Max power dissipation vs. supply voltage

Fig. 16 - Power dissipation and efficiency vs. output power (V_s= 14V)

Fig. 17 - Power dissipation and efficiency vs. output power ($V_s = 18V$)

Fig. 18 - Power dissipation and efficiency vs. output power ($V_s = 24V$)

APPLICATION INFORMATION

Fig. 19 - Application circuit with bootstrap

 $[\]bullet$ R4 is necessary when V_s is less than 10V.

Fig. 20 - P.C. board and component lay-out of the circuit of fig. 19 (1:1 scale)

APPLICATION INFORMATION (continued)

Fig. 21 - Application circuit without bootstrap

Fig. 22 - Output power vs. supply voltage (circuit of fig. 21)

Fig. 23 - Position control for car headlights

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 19.

When the supply voltage V_s is less than 10V, a 100 Ω resistor must be connected between pin 1 and pin 4 in order to obtain the maximum output power.

Different values can be used. The following table can help the designer.

Component	Raccom.	Purpose	Larger than	Smaller than	Allowed range		
Component	value	Purpose	raccomanded value	raccomanded value	Min.	Max.	
R ₁	10 ΚΩ	Close loop gain setting.	Increase of gain.	Decrease of gain. Increase quiescent current.	9 R ₂		
R ₂	100 Ω	Close loop gain setting.	Decrease of gain.	Increase of gain.		R ₁ /9	
R ₃	1 Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads.				
R ₄	100 Ω	Increasing of output swing with low V _s .			47Ω	3300	
C ₁	2.2 μF	Input DC decoupling.	Lower noise	Higher low fre- quency cutoff. Higher noise.	0.1 μF		
C ₂	0.1 μF	Supply voltage bypass.		Danger of oscillations.			
C ₃	2.2 μF	Inverting input DC decoupling.	Increase of the switch-on noise	Higher low frequency cutoff.	0.1 μF		
C ₄	10 μF	Ripple Rejection.	Increase of SVR. Increase of the switch-on time.	Degradation of 2.2 μF SVR.		100 μ	
C ₅	47 μF	Bootstrap		Increase of the distortion at low frequency	10 µF	100 μ	
C ₆	0.22 μF	Frequency stability.		Danger of oscillation.			
C ₇	1000 μF	Output DC decoupling.		Higher low frequency cutoff.			

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

- An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_I cannot be higher than 150°C.
- The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device

damage due to high junction temperature. If, for any reason, the junction temperature increase up to 150°C, the thermal shut-down simply reduces the power dissipation and the

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 26 shows the dissipable power as a function of ambient temperature for different thermal resistance.

current consumption.

Fig. 24 - Output power and drain current vs. case temperature

Fig. 25 - Output power and drain current vs. case temperature

Fig. 26 - Maximum power dissipation vs. ambient temperature

MOUNTING INSTRUCTIONS

The thermal power dissipated in the circuit may be removed by soldering the tabs to a copper area on the PC board (see Fig. 27).

Fig. 27 - Mounding example

During soldering, tab temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.

Fig. 28 - Maximum power dissipation and thermal resistance vs. side "%"

