8W AUDIO AMPLIFIER The TDA1908 is a monolithic integrated circuit in 12 lead quad in-line plastic package intended for low frequency power applications. The mounting is compatible with the old types TBA800, TBA810S, TCA830S and TCA940N. Its main features are: - flexibility in use with a max output curent of 3A and an operating supply voltage range of 4V to 30V; - protection against chip overtemperature; - soft limiting in saturation conditions; - low "switch-on" noise; - low number of external components; - high supply voltage rejection: - very low noise. ## ABSOLUTE MAXIMUM RATINGS | V | |----| | | | Α | | Α | | W | | W | | °C | | | ### APPLICATION CIRCUIT ## CONNECTION DIAGRAM (top view) ### SCHEMATIC DIAGRAM ## TEST CIRCUIT * See fig. 12. ### THERMAL DATA | R _{th J-tab} | Thermal resistance junction-tab Thermal resistance junction-ambient | max
max | 12
(°) 70 | °C/W
°C/W | |-----------------------|---|------------|--------------|--------------| | "th j-amb | Thermal resistance junction-ambient | max | () / (| C/VV | ^(°) Obtained with tabs soldered to printed circuit board with min copper area. # **ELECTRICAL CHARACTERISTICS** (Refer to the test circuit, $T_{amb} = 25$ °C, R_{th} (heatsink)= 8 °C/W, unless otherwise specified) | | Parameter | Test condition | Min. | Тур. | Max. | Unit | |--------------------|--|---|--------------------|-----------------------------|---------------------|------| | Vs | Supply voltage | | 4 | | 30 | V | | Vo | Quiescent output voltage | V _s = 4V
V _s = 18V
V _s = 30V | 1.6
8.2
14.4 | 2.1
9.2
15.5 | 2.5
10.2
16.8 | ٧ | | d | Quiescent drain current | V _s = 4V
V _s = 18V
V _s = 30V | | 15
17.5
21 | 35 | mA | | V _{CEsat} | Output stage saturation voltage (each output transistor) | I _C = 1A
I _C = 2.5A | | 0.5 | | V | | Po | Output power | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 7
6.5
4.5 | 2.5
5.5
9
8
5.3 | | w | ## **ELECTRICAL CHARACTERISTICS** (continued) | | Parameter | Test | condition | Min. | Тур. | Max | Unit | |-----------------|--------------------------------|---|---|--------------------------|-----------------------------|------|------| | d | Harmonic distortion | V _s = 24V | $R_{\perp} = 4\Omega$ 50 mW to $1.5W$ $R_{\parallel} = 4\Omega$ 50 mW to $4W$ $R_{\parallel} = 16\Omega$ 50 mW to $3W$ | | 0.1
0.1
0.1 | | % | | VI | Input sensitivity | 1 V. = 22V H | $ L = 4\Omega P_0 = 2.5W $ $ L = 4\Omega P_0 = 5.5W $ $ L = 4\Omega P_0 = 9W $ $ L = 8\Omega P_0 = 8W $ $ L = 16\Omega P_0 = 5.3W $ | | 37
52
64
90
110 | | m∨ | | VI | Input saturation voltage (rms) | V _s = 9V
V _s = 14V
V _s = 18V
V _s = 24V | | 0.8
1.3
1.8
2.4 | | | V | | Ri | Input resistance (pin 8) | f = 1 KHz | | 60 | 100 | | ΚΩ | | Is | Drain current | f = 1 KHz
V _s = 14V R
V _c = 18V R
V _c = 22V R
V _s = 24V R | L= 4Ω P _o = 5.5W
L= 4Ω P _o = 9W
L= 8Ω P _o = 8W
L= 16Ω P _o = 5.3W | | 570
730
500
310 | | mA | | η | Efficiency | | f = 1 KHz
4Ω P _O = 9W | | 72 | | % | | BW | Small signal bandwidth (-3 dB) | V _s = 18V R | _= 4Ω P _o = 1W | 40 to 40 000 | | | Hz | | G _v | Voltage gain (open loop) | f = 1 KHz | | | 75 | | dB | | G _v | Voltage gain (closed loop) | V _s = 18V
f = 1 KHz | R _L = 4Ω
P _o = 1W | 39.5 | 40 | 40.5 | dB | | eN | Total input noise | (0) | $R_g = 50\Omega$ $R_g = 1K\Omega$ $R_g = 10 K\Omega$ | | 1.2
1.3
1.5 | 4.0 | μ∨ | | | | (00) | $R_g = 50\Omega$
$R_g = 1K\Omega$
$R_g = 10K\Omega$ | | 2.0
2.0
2.2 | 6.0 | μV | | S/N | Signal to noise ratio | $V_s = 18V$ $P_o = 9W$ $R_L = 4\Omega$ | $R_g = 10K\Omega$ $R_g = 0 \qquad (\circ)$ | | 92
94 | | dB | | X | | 1, [- 425 | $R_g = 10K\Omega$ (°°°) | | 88
90 | | dB | | SVR | Supply voltage rejection | V _s = 18V
f _{ripple} = 100 | $R_L = 4\Omega$
Hz $R_g = 10K\Omega$ | 40 | 50 | | dB | | T _{sd} | Thermal shut-down junction (*) | | | | 145 | | °C | (°) Weighting filter = curve A. (°°) Filter with noise bandwidth: 22 Hz to 22 KHz. Fig. 1 - Quiescent output voltage vs. supply voltage Fig. 2 - Quiescent drain current vs. supply voltage Fig. 3 - Output power vs. supply voltage Fig. 4 - Distortion vs. output power ($R_L = 16\Omega$) Fig. 5 ~ Distortion vs. output power $(R_1 = 8\Omega)$ Fig. 6 - Distortion vs. output power $(R_L = 4\Omega)$ Fig. 7 - Distortion vs. frequency ($R_1 = 16\Omega$) Fig. 8 - Distortion vs. frequency $(R_1 = 8\Omega)$ Fig. 9 - Distortion vs. frequency ($R_L = 4\Omega$) Fig. 10 - Open loop frequency response Fig. 11 - Output power vs. input voltage Fig. 12 - Values of capacitor C_× versus gain and B_w Fig. 13 - Supply voltage rejection vs. voltage gain Fig. 14 - Supply voltage rejection vs. source resistance Fig. 15 - Max power dissipation vs. supply voltage Fig. 16 - Power dissipation and efficiency vs. output power (V_s= 14V) Fig. 17 - Power dissipation and efficiency vs. output power ($V_s = 18V$) Fig. 18 - Power dissipation and efficiency vs. output power ($V_s = 24V$) ## APPLICATION INFORMATION Fig. 19 - Application circuit with bootstrap $[\]bullet$ R4 is necessary when V_s is less than 10V. Fig. 20 - P.C. board and component lay-out of the circuit of fig. 19 (1:1 scale) ## APPLICATION INFORMATION (continued) Fig. 21 - Application circuit without bootstrap Fig. 22 - Output power vs. supply voltage (circuit of fig. 21) Fig. 23 - Position control for car headlights ### APPLICATION SUGGESTION The recommended values of the external components are those shown on the application circuit of fig. 19. When the supply voltage V_s is less than 10V, a 100 Ω resistor must be connected between pin 1 and pin 4 in order to obtain the maximum output power. Different values can be used. The following table can help the designer. | Component | Raccom. | Purpose | Larger than | Smaller than | Allowed range | | | |----------------|---------|--|---|---|------------------|-------------------|--| | Component | value | Purpose | raccomanded value | raccomanded value | Min. | Max. | | | R ₁ | 10 ΚΩ | Close loop gain setting. | Increase of gain. | Decrease of gain.
Increase quiescent
current. | 9 R ₂ | | | | R ₂ | 100 Ω | Close loop gain setting. | Decrease of gain. | Increase of gain. | | R ₁ /9 | | | R ₃ | 1 Ω | Frequency stability | Danger of oscillation at high frequencies with inductive loads. | | | | | | R ₄ | 100 Ω | Increasing of output swing with low V _s . | | | 47Ω | 3300 | | | C ₁ | 2.2 μF | Input DC decoupling. | Lower noise | Higher low fre-
quency cutoff.
Higher noise. | 0.1 μF | | | | C ₂ | 0.1 μF | Supply voltage bypass. | | Danger of oscillations. | | | | | C ₃ | 2.2 μF | Inverting input DC decoupling. | Increase of the switch-on noise | Higher low frequency cutoff. | 0.1 μF | | | | C ₄ | 10 μF | Ripple Rejection. | Increase of SVR. Increase of the switch-on time. | Degradation of 2.2 μF SVR. | | 100 μ | | | C ₅ | 47 μF | Bootstrap | | Increase of the distortion at low frequency | 10 µF | 100 μ | | | C ₆ | 0.22 μF | Frequency stability. | | Danger of oscillation. | | | | | C ₇ | 1000 μF | Output DC decoupling. | | Higher low frequency cutoff. | | | | ### THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: - An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_I cannot be higher than 150°C. - The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If, for any reason, the junction temperature increase up to 150°C, the thermal shut-down simply reduces the power dissipation and the The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 26 shows the dissipable power as a function of ambient temperature for different thermal resistance. current consumption. Fig. 24 - Output power and drain current vs. case temperature Fig. 25 - Output power and drain current vs. case temperature Fig. 26 - Maximum power dissipation vs. ambient temperature ### MOUNTING INSTRUCTIONS The thermal power dissipated in the circuit may be removed by soldering the tabs to a copper area on the PC board (see Fig. 27). Fig. 27 - Mounding example During soldering, tab temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. Fig. 28 - Maximum power dissipation and thermal resistance vs. side "%"