

LOW-NOISE TV VERTICAL DEFLECTION SYSTEM

- COMPLETE VERTICAL DEFLECTION SYSTEM
- LOW NOISE
- SUITABLE FOR HIGH DEFINITION MONITORS

DESCRIPTION

The TDA 1170D is a monolithic integrated circuit in a 16-lead dual in-line plastic package. It is intended for use in black and white and colour TV receivers. Low-noise makes this device particularly suitable for use in monitors. The functions incorporated are: synchronization circuit, oscillator and ramp generator, high power gain amplifier, flyback generator, voltage regulator.

CONNECTION DIAGRAM

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage at Pin 2	35	V
V6, V7	Flyback Peak Voltage	60	V
V14	Power Amplifier Input Voltage	+ 10 - 0.5	V
I _o	Output Peak Current (non repetitive) at t = 2 msec	2	Α
I _o	Output Peak Current at f = 50 Hz t ≤ 10 µsec	2.5	Α
I _o	Output Prak Current at f = 50 Hz t > 10 µsec	1.5	Α
13	Pin 3 DC Current at V6 < V2	100	mA
13	Pin 3 Peak to Peak Flyback Current for f = 50 Hz, tfly ≤ 1.5 msec	1.8	Α
I ₁₀	Pin 10 Current	± 20	mA
Ptot	Power Dissipation: at T _{tab} = 90 °C at T _{amb} = 70 °C (free air)	4.3 1	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	∘℃

THERMAL DATA

	_			
R _{th i-tab}	Thermal Resistance Junction-pins	Max	14	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	80	°C/W(°)

^(*) Obtained with pins 4, 5, 12, 13 soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (refer to the test circuits, $V_s = 35 \text{ V}$, $T_{amb} = 25 ^{\circ} \text{ C}$, unless otherwise specified)

DC CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
12	Pin 2 Quiescent Current	l ₃ = 0		7	14	mA	1b
17	Pin 7 Quiescent Current	I ₆ = 0		8	17	mA	1b
- I ₁₁	Oscillator Bias Current	V11 = 1 V		0.1	1	μА	1a
- I ₁₄	Amplifier Input Bias Current	V14 = 1 V		1	10	μА	1b
- I ₁₆	Ramp Generator Bias Current	V16 = 0		0.02	0.3	μА	1a
- I ₁₆	Ramp Generator Current	I ₉ = 20 μA V16 = 0	18.5	20	21.5	μА	1b
Δl ₁₆	Ramp Generator Non-linearity	$\Delta V16 = 0 \text{ to } 12 \text{ V}$ I ₉ = 20 μA		0.2	1	%	1b
Vs	Supply Voltage Range		10		35	V	-
V1	Pin 1 Saturation Voltage to Ground	I ₁ = 1 mA		1	1.4	٧	-
V3	Pin 3 Saturation Voltage to Ground	l ₃ = 10 mA		300	450	mV	1a
V6	Quiescent Output Voltage	$V_s = 10 \text{ V}$ R1 = 1 K Ω R2 = 1 K Ω	4.1	4.4	4.75	٧	1a
		$V_s = 35 V$ R1 = 3 K Ω R2 = 1 K Ω	8.3	8.8	9.45	٧	1a
V6L	Output Saturation Voltage to	- I ₆ = 0.1 A		0.9	1.2	٧	1c
	Ground	$-1_6 = 0.8 \text{ A}$		1.9	2.3	٧	1c
V6H	Output Saturation Voltage to	I ₆ = 0.1 A		1.4	2.1	V	1d
	Supply	$I_6 = 0.8 \text{ A}$		2.8	3.2	V	1d
V8	Regulated Voltage at Pin 8		6.1	6.5	6.9	٧	1b
V9	Regulated Voltage at Pin 9	l ₉ = 20 μA	6.2	6.6	7	٧	1b
$\frac{\Delta V8}{\Delta V_s}$, $\frac{\Delta V9}{\Delta V_s}$	Regulated Voltage Drift with Supply Voltage	$\Delta V_s = 10 \text{ to } 35 \text{ V}$		1		mV/V	1b
V14	Amplifier Input Reference Voltage		2.07	2.2	2.3	٧	-
R10	Pin 10 Input Resistance	V10 ≤ 0.4 V	1			МΩ	1a

Figure 1 : DC Test Circuit.

Figure 1a.

Figure 1b.

Figure 1c.

Figure 1d.

ELECTRICAL CHARACTERISTICS (refer to the AC test circuit, $V_s = 22~V$; f = 50 Hz; $T_{amb} = 25~^{\circ}C$, unless otherwise specified)

AC CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Is	Supply Current	ly = 1 App		140		mA
110	Sync. Input Current (positive or negative)		500			μА
V6	Flyback Voltage	I _y = 1 App		45		V
t _{fly}	Flyback Time	$l_y = 1 \text{ App}$		0.7		ms
Von	Peak to Peak Output Noise	Pin 11 Connected to GND			40	mVpp
fo	Free Running Frequency	(P1 + R1) = 260 KΩ C2 = 0.1 μF		48.5		Hz
		(P1 + R1) = 300 KΩ C2 = 0.1 nF		42.2		Hz
Δf	Synchronization Range	I ₈ = 0.5 mA	14			Hz
$\frac{\Delta f}{\Delta V s}$	Frequency Drift with Supply Voltage	V _s = 10 to 35 V		0.005		Hz/V
Δf ΔT_{pins}	Frequency Drift vs. Pins 4, 5, 12 and 13 Temp.	T _{tab} = 40 to 120 °C		0.01		Hz/°C

Figure 2: AC Test Circuit.

Figure 3: Typical Application Circuit for Smal Screen B/W TV SET (Ry = 2.9Ω , Ly = 6 mH, ly = 1.1 App).

Figure 4: P.C. Board and Components Layout of the Circuit of Fig. 3 (1:1 scale).

MOUNTING INSTRUCTION

The R_{th j-amb} of the TDA 1170D can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (fig. 5) or to an external heatsink (fig. 6).

The diagram of figure 7 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the side "I" of two equal square copper areas having a

thickness of 35 μ (1.4 mils).

During soldering the pins temperature must not exceed 260 °C and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 5 : Example of P.C. Board Copper Area which is Used as Heatsink.

Figure 6: External Heatsink Mounting Example.

Figure 7: Maximum Dissipable Power and Junction to Ambient Thermal Resistance vs. Side "I".

Figure 8: Maximum Allowable Power Dissipation vs. Ambient Temperature.

