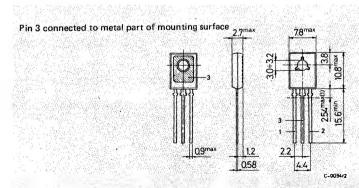


LINEAR INTEGRATED CIRCUITS

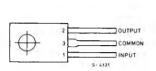
MOTOR SPEED REGULATORS

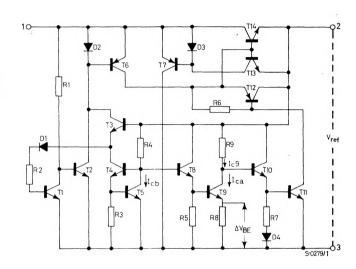
The TCA 900 and TCA 910 are monolithic integrated circuits in Jedec TO-126 plastic package. They are designed for use as speed regulators for DC motors of record players, cassette recorders and players. The TCA 900 is particularly suitable for battery operated portable equipments, and the TCA 910 for car-battery and mains operations.


ABSOLUTE MAXIMUM RATINGS		TCA 900	TCA 910	
V,	Supply voltage	14V	20V	
P _{tot}	Total power dissipation at T _{amb} = 70°C at T _{case} = 100°C	0.8		
T_{stg} T_{j}	Storage temperature Junction temperature		-55 to 150 °C 150 °C	

ORDERING NUMBERS: TCA 900

TCA 910


MECHANICAL DATA


Dimensions in mm

CONNECTION AND SCHEMATIC DIAGRAMS

THERMAL DATA

R _{th j-case} R _{th j-amb} Thermal resistance junction-case Thermal resistance junction-ambient	Typ. Typ.		°C/W
---	--------------	--	------

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{ref}	Reference voltage (between pins 2 and 3)	V _s = 5.5V I _m = 70 mA R _T = 0		2.6		v
l _{d3}	Quiescent current (at pin 3)	V _s = 5.5V I _m = 0 R _T = 0		2.6		mA
V _m	Output voltage (for TCA 900 only)	$V_s = 5.5V$ $I_m = 70 \text{ mA}$ $R_T = 91\Omega$		3.6	3.9	v
V _m	Output voltage (for TCA 910 only)	$V_s = 9V$ $I_m = 70 \text{ mA}$ $R_T = 270\Omega$		5.6	6.3	٧

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Тур.	Мах.	Unit
V ₁₋₂	Dropout voltage	$\Delta V_{m}/V_{m} = -1\%$ $I_{m} = 70 \text{ mA}$ $R_{T} = 91\Omega$		1.2		v
12	Limiting output current (at pin 2)	V _s = 5.5V V ₂₋₃ = 0		400		mA
k = ΔΙ ₂ /ΔΙ ₃		$V_S = 5.5V$ $I_2 = 70 \text{ mA}$ $\Delta I_2 = \pm 10 \text{ mA}$ $R_T = 0$		8.5		_
$\frac{\Delta V_m}{V_m}/\Delta V_s$	Line regulation (for TCA 900 only)	V _s = 5.5V to 12V I _m = 70 mA R _T = 91Ω		0.1		%/V
$\frac{\Delta V_m}{V_m}/\Delta V_s$	Line regulation (for TCA 910 only)	$V_{s} = 10V \text{ to } 16V$ $I_{m} = 70 \text{ mA}$ $R_{T} = 270\Omega$		0.1		%/V
$\frac{\Delta V_m}{V_m}/\Delta I_m$	Load regulation	V _s = 5.5V I _m = 40 to 100 mA R _T = 0		0.005		%/mA
$\frac{\Delta V_{ref}}{V_{ref}}/\Delta T_{an}$	nb Temperature coefficient	V ₁₋₃ = 5.5V I ₂ = 70 mA T _{amb} = -20 to 70°C		0.01		%/°C

Fig. 1 - Test circuit.

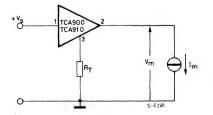


Fig. 2 - Typical application circuit.

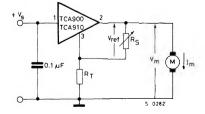


Fig. 3 - Normalized k vs. I2.

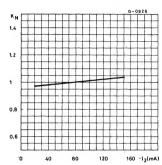


Fig. 4 - Dropout voltage vs. output current

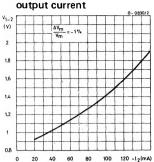
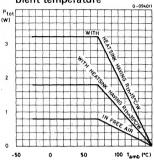



Fig. 5 - Maximum allowable power dissipation vs. ambient temperature

APPLICATION INFORMATION

The regulator supplies the motor in such a way as to keep its speed constant, independent of supply voltage, applied torque and ambient temperature variations. Fig. 6 - Minimum Eo allow-

The basic equation for the motor is:

$$V_m = E_0 + R_m I_m = a_1 n + a_2 c$$

Where:

 $V_m = \text{supply voltage applied to the motor}$ E_0 = back electromotive force

n = motor speed (r.p.m.)

 $R_m = internal resistance (of the motor)$

I_m = current absorbed (by the motor)

a₁ and a₂ = constants = drive torque

A voltage supply with the following characteristics

 $E = E_0$ E = electromotice force $R_o = -R_m$ $R_0 = output resistance$

gives performance required.

able vs. RT 36 32

This means that a variation in current absorbed by the motor, due to a variation in torque applied, causes a proportional variation in regulator output voltage. In fig. 6 is shown the minimum allowable E_0 vs. R_{T} . The TCA 900 and TCA 910 give a reference constant voltage V_{ref} (between pins 2 and 3) independent of variations of V_s, I₂ and ambient temperature.

They also give: $I_3 = I_{d3} + I_2/k$

I₃ = total current at pin 3 Where:

 I_{d3}^{\dagger} = quiescent current at pin 3 ($I_2 = 0$) I_2^{\dagger} = current at pin 2

k = constant

The output voltage V_m, applied to the motor has the following value:

$$V_{m} = \underbrace{V_{ref} + R_{T} \left[\frac{V_{ref}}{R_{s}} (1 + \frac{1}{k}) + I_{d3} \right] + \frac{I_{m}}{k} R_{T}}_{Term 1}$$

Term 1 equals E₀ and fixes the motor speed by means of the variable resistor R_s;

Term 2 $\frac{I_m}{k}$. R_T equals the term R_m . I_m and, therefore, compensates variations of torque applied. Complete compensation is achieved when: $R_T = k R_m$

 $I_f R_{T max} > k R_{m min}$ instability may occur.