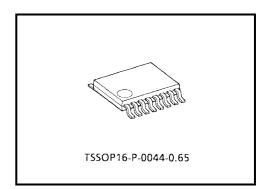
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VCX138FT

Low-Voltage 3-to-8 Line Decoder with 3.6-V Tolerant Inputs and Outputs

The TC74VCX138FT is a high-performance CMOS 3-to-8 decoder. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.


It is also designed with over voltage tolerant inputs and outputs up to 3.6 V.

When the device is enabled, 3 binary select inputs (A, B and C) determine which one of the outputs $(\overline{Y}0\sim\overline{Y}7)$ will go low.

When enable input G1 is held low or either G2A or G2B is held high, decoding function is inhibited and all outputs go high.

G1, G2A, and G2B inputs are provided to ease cascade connection and for use as an address decoder for memory systems.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.06 g (typ.)

Features

• Low-voltage operation : $V_{CC} = 1.8 \sim 3.6 \text{ V}$

• High-speed operation : $t_{pd} = 3.5 \text{ ns (max) (VCC} = 3.0 \sim 3.6 \text{ V)}$

 $t_{pd} = 4.1 \text{ ns (max) (VCC} = 2.3 \sim 2.7 \text{ V)}$

 $t_{pd} = 8.2 \text{ ns (max) (VCC} = 1.8 \text{ V)}$

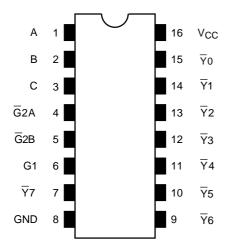
• 3.6 V tolerant inputs and outputs.

• Output current $: I_{OH}/I_{OL} = \pm 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$

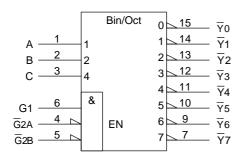
 $: I_{OH}/I_{OL} = \pm 18 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$

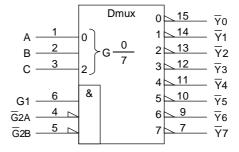
 $: IOH/IOL = \pm 6 \text{ mA (min) (VCC} = 1.8 \text{ V)}$

• Latch-up performance:±300 mA


• ESD performance : Human body model > ±2000 V

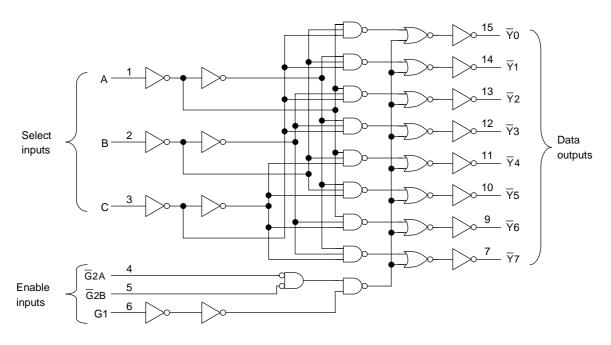
: Machine model $> \pm 200 \text{ V}$


• Package: TSSOP (thin shrink small outline package)


Power-down protection provided on all inputs and outputs

Pin Assignment (top view)

IEC Logic Symbol


Truth Table

	Inputs					Outputs								
	Enable		Select		₹0	<u></u>	_ Y2	_ Y3	<u>7</u> 4	<u></u>	<u>7</u> 6	- 77	Selected Output	
G1	G ₂ A	G ₂ B	С	В	Α	10	11	12	13	14	13	10	17	
L	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	None
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	None
Х	Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	None
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	₹0
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	₹1
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Ÿ2
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Y 3
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	- Y4
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Ȳ5
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Y 6
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Ÿ7

X: Don't care

2

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5~4.6	V	
DC input voltage	V _{IN}	-0.5~4.6	V	
		-0.5~4.6 (Note1)		
DC output voltage	Vouт	-0.5~V _{CC} + 0.5 (Note2)	V	
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{OK}	±50 (Note3)	mA	
DC output current	I _{OUT}	±50	mA	
Power dissipation	PD	180	mW	
DC V _{CC} / ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65~150	°C	

Note 1: $V_{CC} = 0 V$

Note 2: High or low state. IOUT absolute maximum rating must be observed.

Note 3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

3 2002-03-26

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Power Supply voltage	Vcc	1.8~3.6	V
1 ower Supply voltage	VCC	1.2~3.6 (Note4)	V
Input voltage	V _{IN}	-0.3~3.6	V
Output voltage	Vour	0~3.6 (Note5)	V
Output voltage	Vout	0~V _{CC} (Note6)	V
		±24 (Note7)	
Output current	I _{OH} /I _{OL}	±18 (Note8)	mA
		±6 (Note9)	
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	0~10 (Note10)	ns/V

Note 4: Data retention only

Note 5: $V_{CC} = 0 V$

Note 6: High or low state

Note 7: $V_{CC} = 3.0 \sim 3.6 \text{ V}$

Note 8: $V_{CC} = 2.3 \sim 2.7 \text{ V}$

Note 9: $V_{CC} = 1.8 \text{ V}$

Note 10: $V_{IN} = 0.8 \sim 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics (Ta = -40~85°C, 2.7 V < V_{CC} \leq 3.6 V)

Characteris	stics	Symbol	Test C	Condition	V _{CC} (V)	Min	Max	Unit
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	_	2.7~3.6	2.0	_	V			
Input voltage	L-level	VIL		_	2.7~3.6	_	Max	v
Output voltage				$I_{OH} = -100 \ \mu A$	2.7~3.6	V _{CC} - 0.2		
	H-level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -12 \text{ mA}$	2.7	2.2		
				$I_{OH} = -18 \text{ mA}$	3.0	2.4		V
Output voltage				$I_{OH} = -24 \text{ mA}$	3.0	2.2		
	L-level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	2.7~3.6	_	0.2	
				I _{OL} = 12 mA	2.7	_	0.4	
				I _{OL} = 18 mA	3.0	_	0.4	
				I _{OL} = 24 mA	3.0	_	0.55	
Input leakage currer	nt	I _{IN}	V _{IN} = 0~3.6 V		2.7~3.6	_	±5.0	μΑ
Input leakage current		I _{OFF}	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μΑ
Quiescent supply cu	ırrent	loo	$V_{IN} = V_{CC}$ or GND		2.7~3.6	_	20.0	
Quiescent supply co	III GIIL	Icc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		2.7~3.6	_	±20.0	μΑ
Increase in I _{CC} per i	input	Δlcc	$V_{IH} = V_{CC} - 0.6 \text{ V}$		2.7~3.6	_	750	

DC Characteristics (Ta = $-40~85^{\circ}$ C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characte	ristics	Symbol	Tes	st Condition		Min Max 1.6 —	Unit	
Characteristics		Cymbol	100	V _{CC} (V)	IVIIII	IVIAA	Offic	
Input voltage	H-level	V _{IH}		_	2.3~2.7	1.6	_	V
input voltage	L-level	V _{IL}		_	2.3~2.7	_	0.7	v
				I _{OH} = -100 μA	2.3~2.7	V _{CC} - 0.2	_	
Input leakage curre Power OFF leakag	H-level	V _{OH}	VIN = VIH OF VII	I _{OH} = -6 mA	2.3	2.0	_	
				I _{OH} = -12 mA	VCC (V) 2.3-2.7 1.6 — V 2.3-2.7 — 0.7 V 2.3-2.7 — — — 2.3 2.0 — — 2.3 1.8 — V 2.3 1.7 — V 2.3-2.7 — 0.2 0.2 2.3 — 0.4 0.4 2.3 — 0.6 0.6 2.3-2.7 — ±5.0 μA 0 — 10.0 μA			
Output voltage	I _{OH} = -12 mA	2.3	1.7	_	V			
		Voh		$I_{OL} = 100 \mu A$	2.3~2.7	_	0.2	
	L-level		I _{OL} = 12 mA	2.3	_	0.4		
				I _{OL} = 18 mA	2.3	_	0.6	
Input leakage curr	ent	I _{IN}	V _{IN} = 0~3.6 V	·	2.3~2.7	_	±5.0	μΑ
Power OFF leakag	ge current	I _{OFF}	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μА
Output voltage	loo	V _{IN} = V _{CC} or GND		2.3~2.7	_	20.0	^	
Quiescent supply		icc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		2.3~2.7	_	±20.0	μΑ

DC Characteristics (Ta = $-40\sim85^{\circ}$ C, 1.8 V \leq V_{CC} < 2.3 V)

Characteri	stics	Symbol	Test	Condition		Min	Max	Unit
					V _{CC} (V)			
Input voltage	H-level	V _{IH}		_	1.8~2.3	$\begin{array}{c} 0.7 \times \\ V_{CC} \end{array}$		V
input voltage	L-level	V _{IL}		_	1.8~2.3		0.2 × V _{CC}	V
	H-level	Voh	V _{IN} = V _{IH} or V _{II}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage				$I_{OH} = -6 \text{ mA}$	1.8	1.4	_	V
	L-level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	1.8		0.2	
	L-level	VOL	N - VIH OI VIL	I _{OL} = 6 mA	1.8	_	0.2 × VCC	
Input leakage curre	nt	I _{IN}	V _{IN} = 0~3.6 V		1.8	_	±5.0	μΑ
Power OFF leakage	current	I _{OFF}	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μΑ
Quiescent supply co	ırront	laa	$V_{IN} = V_{CC}$ or GND		1.8	_	20.0	^
Quiescent supply co	uli Gill	Icc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		1.8	_	±20.0	μА

5

AC Characteristics (Ta = $-40\sim85$ °C, Input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
	+		1.8	1.0	8.2	
Propagation delay time (A, B, C- \overline{Y})	t _{pLH}	(Fig. 1, 2)	2.5 ± 0.2	0.8	4.1	ns
	t _{pHL}		3.3 ± 0.3	0.6	1.0 8.2 0.8 4.1 0.6 3.5 1.0 8.2 0.8 4.1 0.6 3.5 1.0 8.2 0.8 4.1	
	.		1.8	1.0	8.2	
Propagation delay time (G1- \overline{Y})	t _{pLH}	(Fig. 1, 2)	$V_{CC}(V)$ 1.8 1.0 8.2 2.5 ± 0.2 0.8 4.1 3.3 ± 0.3 0.6 3.5 1.8 1.0 8.2 2.5 ± 0.2 0.8 4.1 3.3 ± 0.3 0.6 3.5 1.8 1.0 8.2 2.5 ± 0.2 0.8 4.1	4.1	ns	
	t _{pHL}		3.3 ± 0.3	1.0 8.2 0.8 4.1 0.6 3.5 1.0 8.2 0.8 4.1 0.6 3.5 1.0 8.2 0.8 4.1		
	.		1.8	1.0	8.2	
Propagation delay time ($\overline{G}2 - \overline{Y}$)	t _{pLH}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.1	ns		
	t _{pHL}		3.3 ± 0.3	0.6	3.5	

For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Dynamic Switching Characteristics (Ta = 25°C, Input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

Characteristics	Symbol	Symbol Test Condition		Typ	Unit	
Characteristics	Symbol	rest Condition	V _{CC} (V)	Typ. 0.25 0.6 0.8 -0.25 -0.6 -0.8 1.5 1.9 2.2	Offic	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 1.8	0.25		
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 2.5	0.6	V	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	V _{CC} (V) 31 V _{CC} (Note11) 2.5 0.6 V _{CC} (Note11) 3.3 0.8 (Note11) 2.5 -0.6 (Note11) 3.3 -0.8 (Note11) 1.8 1.5 (Note11) 2.5 1.9 V _{CC} (Note11) 2.5 1.9 V _{CC} (Note11) 3.3 V _{CC} (Note11) 3.3 -0.8 (Note11) 2.5 1.9 V _{CC} (Note11) 3.5 V _{CC} (N			
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 1.8	-0.25		
Quiet output minimum dynamic VOL	V _{OLV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 2.5	-0.6	V	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 3.3	/cc (V) 1.8		
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 1.8	1.5	.5	
Quiet output minimum dynamic VOH	V _{OHV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 2.5	1.9	V	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 3.3	2.2		

Note 11: This parameter is guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol		Test Condition		V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}		_		1.8, 2.5, 3.3	6	pF
Power dissipation capacitance	C_{PD}	f _{IN} = 10 MHz		(Note12)	1.8, 2.5, 3.3	40	pF

Note 12: CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

6

Average operating current can be abstained by the equation:

 $ICC (opr) = CPD \cdot VCC \cdot fIN + ICC$

Test Circuit

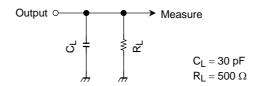


Figure 1

AC Waveform

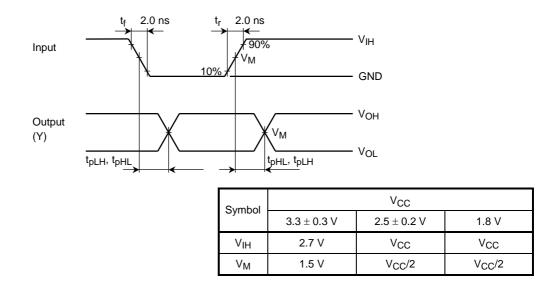
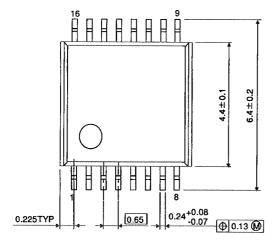
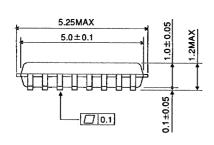
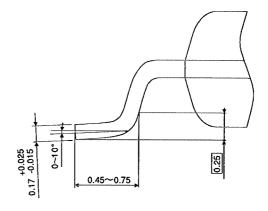



Figure 2 t_{pLH}, t_{pHL}


Unit: mm


Package Dimensions

TSSOP16-P-0044-0.65

Weight: 0.06 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.