TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC # TC74HCT74AP, TC74HCT74AF, TC74HCT74AFN ### DUAL D-TYPE FLIP FLOP WITH PRESET AND CLEAR The TC74HCT74A is a high speed CMOS D FLIP FLOP fabricated with silicon gate C2MOS technology. It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation. This dreive may be used as a level converter for interfacing TTL or NMOS to High Speed CMOS. The inputs are compatible with TTL, NMOS and CMOS output voltage levels. The signal level applied to the D INPUT is transferred to Q OUTPUT during the positive going transition of the CLOCK pulse. CLEAR and PRESET are independent of the CLOCK and are accomplished by setting the applopriate input to an "L" level. All inputs are equipped with protection circuits against static discharge or transient excess voltage. ### FEATURES: • High Speed----- $f_{MAX} = 53MHz$ (typ.) at $V_{CC} = 5V$ - Low Power Dissipation ··········· $I_{CC} = 2\mu A(Max.)$ at Ta = 25°C - Compatible with TTL outputs···· $V_{IH} = 2V$ (Min.) $V_{IL} = 0.8V \text{ (Max.)}$ - Wide Interfacing abilityLSTTL, NMOS, CMOS - Output Drive Capability 10 LSTTL Loads - Symmetrical Output Impedance | I_{OH} | = I_{OL} = 4mA (Min.) - Balanced Propagation Delays ····· t_{oLH} ≃ t_{oHL} - Pin and Function Compatible with 74LS74 # TRUTH TABLE | | INP | UTS | | OUTPUTS | | FUNCTION | |-----|-----|-----|----------|---------|------------------|-----------| | CLR | PR | D | СК | Q | Q | FONCTION | | L | Н | Х | Х | L | Н | CLEAR | | Н | L | Х | Х | Н | L | PRESET | | L | L | Х | Х | Н | Н | _ | | Н | Н | L | 1 | L | Н | _ | | Н | Н | Н | - | Н | L | _ | | Н | Ι | Х | | Qn | \overline{Q}_n | NO CHANGE | X : Don't Care (Note) The JEDEC SOP (FN) is not available in Japan. ### **PIN ASSIGNMENT** ### IEC LOGIC SYMBOL # CLR OPROVED OF THE CONTRACT ON 2 2001-05-17 ### **ABSOLUTE MAXIMUM RATINGS** | PARAMETER | SYMBOL | VALUE | UNIT | |-------------------------------------|------------------|----------------------------|------| | Supply Voltage Range | V _{cc} | −0.5~7 | V | | DC Input Voltage | V _{IN} | $-0.5 \sim V_{CC} + 0.5$ | V | | DC Output Voltage | V _{OUT} | −0.5~V _{CC} + 0.5 | V | | Input Diode Current | I _{IK} | ± 20 | mA | | Output Diode Current | I _{OK} | ± 20 | mA | | DC Output Current | I _{OUT} | ± 25 | mA | | DC V _{CC} / Ground Current | I _{cc} | ± 50 | mA | | Power Dissipation | P _D | 500 (DIP)* / 180 (SOP) | mW | | Storage Temperature | T _{stg} | −65~150 | °C | ^{*500}mW in the range of Ta= $-40^{\circ}\text{C}\sim65^{\circ}\text{C}$. From Ta=65°C to 85°C a derating factor of $-10\text{mW}/^{\circ}\text{C}$ shall be applied until 300mW. ### **RECOMMENDED OPERATING CONDITIONS** | PARAMETER | SYMBOL | VALUE | UNIT | |--------------------------|---------------------------------|-------------------|----------| | Supply Voltage | V_{CC} | 4.5~5.5 | V | | Input Voltage | V _{IN} | 0∼V _{cc} | ٧ | | Output Voltage | V _{OUT} | 0~V _{cc} | V | | Operating Temperature | T _{opr} | −40~85 | °C | | Input Rise and Fall Time | t _r , t _f | 0~500 | ns | ### DC ELECTRICAL CHARACTERISTICS | PARAMETER | SYMBOL | TEST CONDITION | | V _{CC} | Ta = 25°C | | C | Ta = −40~85°C | | UNIT | |-------------------------------|-----------------|--|--------------------------|------------------|-----------|------|-------|---------------|-------|---------| | PARAIVIETER | STIVIBUL | | | (v) | MIN. | TYP. | MAX. | MIN. | MAX. | OIVIII | | High - Level
Input Voltage | V _{IH} | | | 4.5
\$
5.5 | 2.0 | _ | _ | 2.0 | _ | < | | Low - Level
Input Voltage | VIL | | | 4.5
\$
5.5 | _ | _ | 0.8 | _ | 0.8 | ٧ | | High - Level | V _{OH} | V _{IN} = | $I_{OH} = -20 \mu A$ | 4.5 | 4.4 | 4.5 | _ | 4.4 | _ | V | | Output Voltage | | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | $I_{OH} = -4 \text{ mA}$ | 4.5 | 4.18 | 4.31 | _ | 4.13 | _ | V | | Low - Level | V _{OL} | V _{IN} = | $I_{OL} = 20 \mu A$ | 4.5 | _ | 0.0 | 0.1 | _ | 0.1 | V | | Output Voltage | VOL | V _{IH} or V _{IL} | $I_{OL} = 4 \text{ mA}$ | 4.5 | _ | 0.17 | 0.26 | _ | 0.33 |] V | | Input Leakage Current | I _{IN} | $V_{IN} = V_{CC}$ or GND | | 5.5 | _ | _ | ± 0.1 | _ | ± 1.0 | | | | I _{cc} | $V_{IN} = V_{CC}$ or GND
PER INPUT: $V_{IN} = 0.5V$ or 2.4V
OTHER INPUT: V_{CC} or GND | | 5.5 | _ | _ | 2.0 | _ | 20.0 | μ A | | Quiescent Supply Current | Ic | | | 5.5 | _ | _ | 2.0 | _ | 2.9 | mA | 3 2001-05-17 TIMING REQUIREMENTS (Input $t_r = t_f = 6ns$) | PARAMETER | SYMBOL | YMBOL TEST CONDITION | | Ta = | 25°C | Ta = −40~85°C | UNIT | |----------------------|---------------------|----------------------|---------------------|------|-------|---------------|-------| | PARAIVIETER | STIVIBUL | TEST CONDITION | V _{CC} (V) | TYP. | LIMIT | LIMIT | UNIT | | Minimum Pulse Width | t _{W(L)} | | 4.5 | _ | 15 | 19 | | | (CK) | t _{W(H)} | | 5.5 | - | 14 | 17 | | | Minimum Pulse Width | 4 | | 4.5 | _ | 15 | 19 | | | (CLR, PR) | t _{W(L)} | | 5.5 | _ | 14 | 17 | | | Minimum Cat Time | ts | | 4.5 | _ | 15 | 19 | ns | | Minimum Set—up Time | | | 5.5 | _ | 14 | 17 | 113 | | Minimum Hold Time | t _h | | 4.5 | _ | 0 | 0 | | | I Willimum Hold Time | | | 5.5 | _ | 0 | 0 | | | Minimum Removal Time | ne t _{rem} | | 4.5 | _ | 5 | 5 | | | (CLR, PR) | | | 5.5 | _ | 5 | 5 | | | Clask Fraguency | | | 4.5 | _ | 27 | 22 | NALI- | | Clock Frequency | | | 5.5 | _ | 30 | 24 | MHz | AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, $V_{CC} = 5V$, $Ta = 25^{\circ}C$, Input $t_r = t_f = 6ns$) | | | 2 1 7 66 7 | | | | | |--|--------------------------------------|----------------|------|------|------|------| | PARAMETER | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | | Output Transition Time | t _{TLH}
t _{THL} | | _ | 6 | 12 | | | Propagation Delay Time $(CK-Q, \overline{Q})$ | t _{pLH}
t _{pHL} | | _ | 17 | 28 | ns | | Propagation Delay Time $(\overline{CLR}, \overline{PR} - Q, \overline{Q})$ | t _{pLH}
t _{pHL} | | _ | 15 | 25 | | | Maximum Clock Frequency | f _{MAX} | | 29 | 53 | _ | MHz | AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$) | PARAMETER | SYMBOL | BOL TEST CONDITION | | Ta = 25°C | | | $Ta = -40 \sim 85^{\circ}C$ | | UNIT | |---|------------------------|--------------------|---------------------|-----------|------|------|-----------------------------|------|-------| | PARAIVIETER | STIVIBUL | TEST CONDITION | V _{CC} (V) | MIN. | TYP. | MAX. | MIN. | MAX. | UIVII | | Output Transition Time | t _{TLH} | | 4.5 | _ | 8 | 15 | - | 19 | | | Output Transition Time | t _{THL} | | 5.5 | _ | 7 | 13 | _ | 16 | | | Propagation Delay Time | t _{pLH} | | 4.5 | - | 21 | 33 | _ | 41 | ns | | $(CK-Q,\overline{Q})$ | t _{pHL} | | 5.5 | _ | 19 | 30 | - | 37 | 113 | | Propagation Delay Time | t _{pLH} | | 4.5 | - | 18 | 30 | _ | 38 | | | $(\overline{CLR}, \overline{PR} - Q, \overline{Q})$ | t _{pHL} | | 5.5 | _ | 15 | 27 | _ | 35 | | | Mariana Glada Francia | £ . | | 4.5 | 27 | 48 | _ | 22 | _ | MHz | | Maximum Clock Frequency | f _{MAX} | | 5.5 | 30 | 53 | _ | 24 | _ | IVITZ | | Input Capacitance | C _{IN} | | | _ | 5 | 10 | _ | 10 | nE | | Power Dissipation Capacitance | C _{PD} | (1) | | _ | 32 | _ | _ | _ | pF | Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/2$ (per F/F) 4 2001-05-17 ## **DIP 14PIN PACKAGE DIMENSIONS (DIP14-P-300-2.54)** Unit in mm # SOP 14PIN (200mil BODY) PACKAGE DIMENSIONS (SOP14-P-300-1.27) Unit in mm 5 2001-05-17 # SOP 14PIN (150mil BODY) PACKAGE DIMENSIONS (SOL14-P-150 -1.27) Unit in mm ### **RESTRICTIONS ON PRODUCT USE** 000707EBA - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. - The products described in this document are subject to the foreign exchange and foreign trade laws. - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. 7 • The information contained herein is subject to change without notice.