TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74HC646AP

OCTAL BUS TRANSCEIVER/REGISTER (3-STATE)

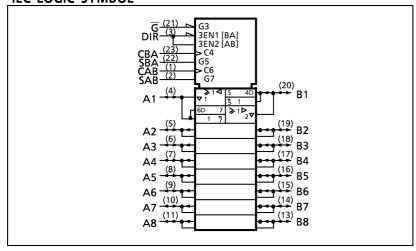
The TC74HC646A is high speed CMOS OCTAL BUS TRANSCEIVER/REGISTERs fabricated with silicon gate C^2MOS technology.

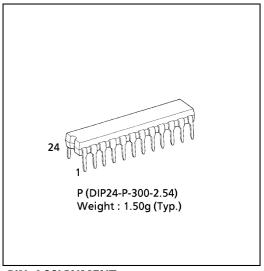
It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation. This device is bus transceiver with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the internal registers.

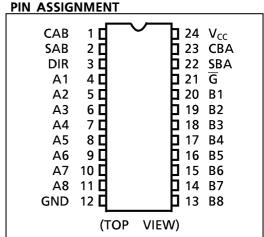
When the direction input (DIR) is held high, the A1 thru A8 become inputs and the B1 thru B8 become outputs. When the DIR input is held low, the A1 thru A8 become output and the B1 thru B8 become inputs.

The enable input \overline{G} is held high, both the A Bus and B Bus become high impedance

The select inputs (SAB, SBA) can muiltiplex stored and real-time (transparent mode) data.


Data on the A Bus or B Bus can be clocked into the registers on the positive going transition of either CAB or CBA clock inputs, respectively.


All inputs are equipped with protection circuits against static discharge or transient excess voltage.


FEATURES:

- - at $V_{CC} = 5V$
- Low Power Dissipation $I_{CC} = 4\mu A(Max.)$ at Ta = 25°C High Noise Immunity $I_{CC} = 4\mu A(Max.)$
- Symmetrical Output Impedance… | I_{OH} | = I_{OL} = 6mA(Min.)
- Balanced Propagation Delays $\cdots t_{pLH} = t_{pHL}$
- Wide Operating Voltage Range ···· V_{CC} (opr.) = 2V~6V
- Pin and Function Compatible with 74LS646

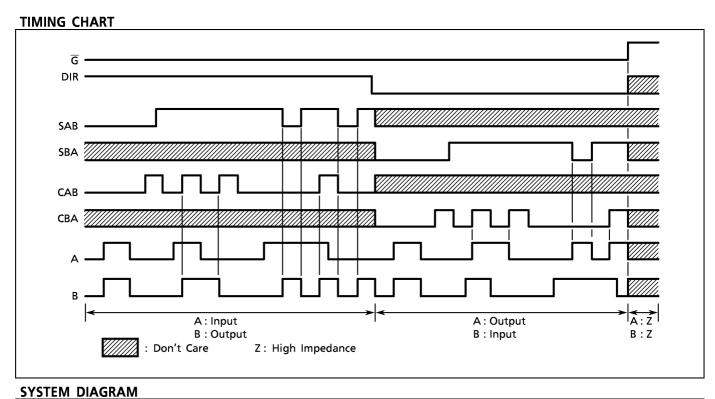
IEC LOGIC SYMBOL

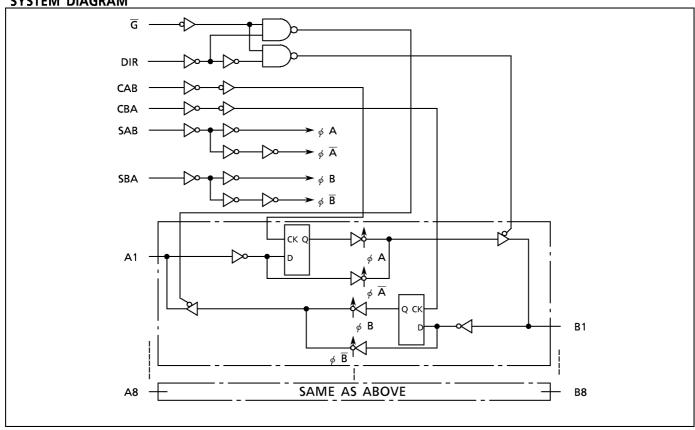
APPLICATION NOTES

- 1) Do not apply a signal to any bus terminal when it is in the out put mode. Damage may result.
- 2) All floating (high impedance) bus terminals must have their input levels fixed by means of pull up or pull down resistors.

2001-05-17

TRUTH TABLE


G	DIR	САВ	СВА	SAB	SBA	А	В	Function
H	x	x	х	х	x	INPUTS Z	INPUTS Z	The output functions of A and B Busses are disabled.
	^		4	x	х	Х	х	Both A and B Busses are used as inputs to the internal flip-flops. Data on the Bus will be stored on the rising edge of the Clock.
		x	X *	L	x	INPUTS L H	OUTPUTS L H	The data on the A bus are displayed on the B bus.
L	Н		X *	L	х	L H	L	The data on the A Bus are displayed on the B Bus, and are stored into the A storage flip-flops on the rising edge of CAB.
		х	X *	Н	х	х	Qn	The data in the A storage flip-flops are displayed on the B Bus.
			X *	Н	x	L H	L H	The data on the A Bus are stored into the A storage flip-flops on the rising edge of CAB, and the stored data propagate directly onto the B Bus.
		X*	x	x	L	OUTPUTS L H	INPUTS L H	The data on the B bus are displayed on the A bus.
L	L	X*		х	L	L H	L H	The data on the B Bus are displayed on the A Bus, and are stored into the B storage flip-flops on the rising edge of CBA.
		X *	Х	х	Н	Qn	х	The data in the B storage flip-flops are displayed on the A Bus.
		X*	4	x	Н	L H	L H	The data on the B Bus are stored into the B storage flip-flops on the rising edge of CBA, and the stored data propagate directly onto the A Bus.


Notes: X: Don't Care

On: The data stored into the internal flip-flops by most recent low to high transition of the clock inputs.

Z : High Impedance

* The clocks are not internally gated with either \overline{G} or DIR. Therefore, data on the A and/or B Busses may be clocked into the storage flip-flops at any time.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	− 0.5~7	V
DC Input Voltage	V _{IN}	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	I _{IK}	± 20	mA
Output Diode Current	I _{OK}	± 20	mA
DC Output Current	I _{OUT}	±35	mA
DC V _{CC} / Ground Current	I _{cc}	± 75	mA
Power Dissipation	P _D	500*	mW
Storage Temperature	T _{stg}	−65~150	°C

^{*500}mW in the range of Ta= $-40^{\circ}\text{C}\sim65^{\circ}\text{C}$. From Ta=65°C to 85°C a derating factor of $-10\text{mW}/^{\circ}\text{C}$ shall be applied until 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{cc}	2~6	٧
Input Voltage	V _{IN}	0~V _{CC}	٧
Output Voltage	V _{OUT}	0~V _{CC}	V
Operating Temperature	T _{opr}	−40~85	°C
Input Rise and Fall Time	t _r , t _f	$0 \sim 1000 (V_{CC} = 2.0V)$ $0 \sim 500 (V_{CC} = 4.5V)$ $0 \sim 400 (V_{CC} = 6.0V)$	ns

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CO	V _{cc}	Ta = 25°C			Ta = -4	UNIT		
PARAIVIETER	STIVIBUL	1231 CC	(v)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High - Level Input Voltage	High - Level VIH			2.0 4.5 6.0	1.50 3.15 4.20			1.50 3.15 4.20		>
Low - Level Input Voltage	VIL			2.0 4.5 6.0			0.50 1.35 1.80		0.50 1.35 1.80	٧
High - Level Output Voltage	V _{OH}	V _{IN} =	$I_{OH} = -20\mu A$	2.0 4.5 6.0	1.9 4.4 5.9	2.0 4.5 6.0	_ _	1.9 4.4 5.9	_ _ _	. v
Output voltage	011	V _{IH} or V _{IL}	$I_{OH} = -6 \text{ mA}$ $I_{OH} = -7.8 \text{ mA}$	4.5 6.0	4.18 5.68	4.31 5.80	_	4.13 5.63	=	
Low - Level	V _{OL}	V _{IN} =	$I_{OL} = 20 \mu A$	2.0 4.5 6.0		0.0 0.0 0.0	0.1 0.1 0.1	_ _ _	0.1 0.1 0.1	v
Output Voltage		V _{IH} or V _{IL}	$I_{OL} = 6 \text{ mA}$ $I_{OL} = 7.8 \text{mA}$	4.5 6.0	1	0.17 0.18	0.26 0.26	_	0.33 0.33	
3 - State Output Off - State Current		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		6.0	_	_	± 0.5	_	± 5.0	
Input Leakage Current	I _{IN}	$V_{IN} = V_{CC}$ or GND		6.0	_	_	± 0.1	_	± 1.0	μ A
Quiescent Supply Current	I _{CC}	$V_{IN} = V_{CO}$	c or GND	6.0	_	_	4.0	_	40.0	

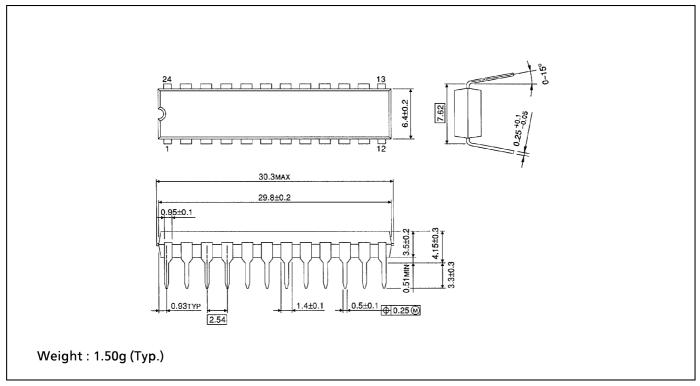
TIMING REQUIREMENTS (Input $t_r = t_f = 6ns$)

PARAMETER	SYMBOL	TEST CONDITION		Ta =	25°C	$Ta = -40 \sim 85^{\circ}C$	UNIT
PARAIVIETER	STIVIBUL	TEST CONDITION	$V_{CC}(V)$	TYP.	LIMIT	LIMIT	UNIT
Minimum Pulse Width	t _{W(H)}		2.0	_	75	95	
			4.5	<u> </u>	15	19	
(CK)	t _{W(L)}		6.0	_	13	16	
			2.0	_	50	65	
Minimum Set—up Time	t _s		4.5	–	10	13	ns
			6.0	–	9	11	
			2.0	_	5	5	
Minimum Hold Time	t _h		4.5	<u> </u>	5	5	
			6.0	l –	5	5	
			2.0	_	6	5	
Clock Frequency	f		4.5	-	31	25	MHz
			6.0	_	36	29	

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 6ns$)

PARAMETER	SYMBOL	TEST				Γa = 25°0	2	Ta = -4	UNIT	
PARAIVIETER	STIVIBUL	CONDITION	CL(pF)	CL(pF) V _{CC} (V)		TYP.	MAX.	MIN.	MAX.	UNIT
Output Transition Time	t _{TLH} t _{THL}		50	2.0 4.5 6.0		25 7 6	60 12 10	_ _ _	75 15 13	
Propagation Delay Time	t _{pLH}		50	2.0 4.5 6.0		74 21 18	150 30 26	_ _ _	190 38 32	
(BUS-BUS)	t _{pHL}		150	2.0 4.5 6.0	_ _ _	91 26 22	190 38 32	_ _ _	240 48 41	
Propagation Delay Time	t _{pLH}		50	2.0 4.5 6.0	_ _ _	98 28 24	210 42 36	_ _ _	265 53 45	
(CAB, CBA-BUS)	t _{pHL}		150	2.0 4.5 6.0	_ _ _	116 33 28	250 50 43	_ _ _	315 63 54	
Propagation Delay Time	t _{pLH}		50	2.0 4.5 6.0	_ _ _	81 23 20	170 34 29	_ _ _	215 43 37	ns
(SAB, SBA—BUS)	t _{pHL}		150	2.0 4.5 6.0	_ _ _	98 28 24	210 42 36	_ _ _	265 53 45	
Output Enable Time	t _{pZL}	DI 1140	50	2.0 4.5 6.0		84 24 20	175 35 30	_ _ _	220 44 37	
(G, DIR—BUS)	t _{pZH}	$RL = 1k\Omega$	150	2.0 4.5 6.0	_ _ _	102 29 25	215 43 37	_ _ _	270 54 46	
Output Disable Time (G, DIR—BUS)	t _{pLZ} t _{pHZ}	$RL = 1k\Omega$	50	2.0 4.5 6.0	_ _ _	60 23 20	175 35 30	_ _	220 44 37	

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 6ns$) (Con'd)


	CVMADOL	TEST CONDITION			Ta = 25°C			Ta = -40~85°C		UNIT
PARAMETER	SYMBOL	TEST CONDITION	(pF)	V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	ONIT
Maximum Clock Frequency	f _{MAX}		50	2.0 4.5 6.0	6 31 36	19 67 79		5 25 29	111	MHz
Input Capacitance	C _{IN}				1	5	10	_	10	
Output Capacitance	C _{I / O}				1	13	_	_	1	pF
Power Dissipation Capacitance	C _{PD} (1)				_	39	_	_	_	

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 8$ (per bit)

DIP 24PIN PACKAGE DIMENSIONS (DIP24-P-300-2.54)

Unit in mm

7

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.