TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4W66F, TC4W66FU

DUAL BILATERAL SWITCH

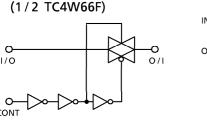
The TC4W66 contains two independence circuits of bidirectional switches.

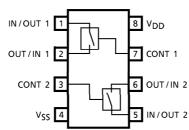
When control input CONT is set to "H" level, the impedance between input and output of the switch becomes low and when it is set to "L" level, the switch becomes high. This can be applied for switching of analog signals and digital signals.

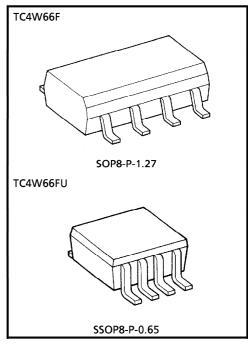
FEATURES

• ON-resistance, RON

• OFF-resistance, ROFF

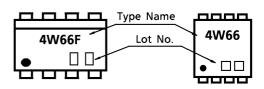

 R_{OFF} (Typ.) > $10^{9}\Omega$


MAXIMUM RATINGS


LOGIC DIAGRAM

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	Vss - 0.5~Vss + 20	V
Control Input Voltage	V _{C IN}	$V_{SS} = 0.5 \sim V_{DD} + 0.5$	٧
Switch I/O Voltage	V _{I/O}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
Power Dissipation	PD	300	mW
Potential difference across I/O during ON	V _I -V _O	± 0.5	٧
Control Input Current	IC IN	± 10	mA
Operating Temperature Range	T _{opr}	- 40~85	°C
Storage Temperature	T _{stg}	- 65∼150	°C
Lead Temp./Time	TL	260°C / 10s	

PIN ASSIGNMENT (TOP VIEW)



Weight SOP8-P-1.27 : 0.05g (Typ.) SSOP8-P-0.65 : 0.02g (Typ.)

MARKING

TRUTH TABLE

CONTROL	IMPEDANCE BETWEEN IN/OUT-OUT/IN *
Н	$0.5 \sim 5 \times 10^{2} \Omega$
L	>10 ⁹ Ω

* See static electrical characteristics.

RECOMMENDED OPERATING CONDITIONS ($V_{SS} = 0V$)

CHARACTERISTICS	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}	_	3		18	V
Input/Output Voltage	V _{DD} /V _{OUT}		0		V_{DD}	V

CHARACTERISTICS	SYM- TEST		V_{DD}	Ta = -40°C		Ta = 25°C			Ta = 85°C		UNIT
CHARACTERISTICS	BOL	CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	OINIT
Control Input			5	3.5	_	3.5	2.75	_	3.5	_	
High Voltage	V _{IH}	$ I_{IS} = 10 \mu A$	10	7.0	—	7.0	5.50	_	7.0	—	
Ingh voltage			15	11.0	_	11.0	8.25		11.0	_	_v
Control Input			5	_	1.5	_	2.25	1.5		1.5	
Low Voltage	V _{IL}	$ I_{IS} = 10 \mu A$	10	_	3.0	_	4.5	3.0	_	3.0	
Low Voltage			15		4.0		6.75	4.0	_	4.0	
		$0 \le V_{IS} \le V_{DD}$	5	_	800	_	290	950	_	1200	
On-State Resistance	RON	$ R_L = 10k\Omega$	10	_	210	_	120	250	—	300	
			15		140	_	85	160	_	200	Ω
∆ On-State			5		_	_	10	_	_	_	32
Resistance (Between	RON 4	_	10	_	_	_	6	_	_	—	
Any2 Switches)			15	1	—	_	4			_	
		V _{IN} = 18V,	18		± 100		± 0.1	± 100		± 1000	
Input / Output Leakage Current IOFF		V _{OUT} = 0V	'0	_	- 100	_	- 0.	± 100		1000	nA
	OFF	$V_{IN} = 0V$,	18		± 100		± 0.1	± 100		± 1000	
		V _{OUT} = 18V									
Quiescent Device	ujescent Device	$V_{IN} = V_{DD}$	5	_	0.25	_	0.001	0.25	_	7.5	
Current	1 100		10	_	0.5	_	0.001	0.5	_	15	
		V _{SS} *	15		1.0	_	0.002	1.0	_	30	
Input H Level	ΊΗ	V _{IH} = 18V	18	_	0.1	_	10 ⁻⁵			1.0	
Current L Level	l _{IL}	V _{IL} = 0V	18	_	- 0.1	_	– 10 ^{– 5}	- 0.1	_	- 1.0	

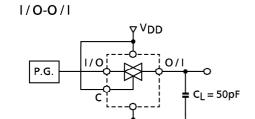
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, $V_{SS} = 0V$, $C_L = 50pF$)

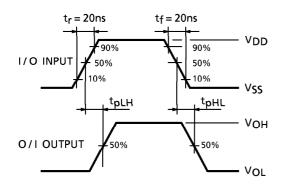
CHARACTERISTICS	SYMBOL	TEST CONDITION	V _{SS} (V)	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Phase Difference between Input to	φ Ι- Ο	C _L = 50pF	0 0	5 10		15 8	40 20	
Output			0	15	_	5	15	
Propagation Delay	+	$R_{L} = 1k\Omega$	0	5	_	55	120	
Time (CONTROL-OUT)	t _{pZL}	$C_L = 50pF$	0	10	_	25	40	ns
Time (continue out)	t _{pZH}	CL = 30pi	0	15	_	20	30	
Propagation Delay	t _{pLZ}	$R_{I} = 1k\Omega$	0	5	_	45	80	
Time (CONTROL-OUT)	t _{pHZ}	$C_L = 50pF$	0	10	_	30	70	
Time (continol oot)	чрни	CL = 30pi	0	15	_	25	60	
MAX. Control Input	f _{MAX}	$R_{I} = 1k\Omega$	0	5	_	10	—	
Repetition Rate	(C)	$C_L = 50pF$	0	10	_	12	—	
Repetition Rate	(C)	_	0	15	_	12		MHz
-3dB Cutoff	fMAX	$R_L = 1k\Omega$	_ 5	5		30		
Frequency	(I-O)	$C_L = 50pF$ (*1)				30		
Total Harmonic Distortion	_	$R_L = 10k\Omega$ $f = 1kHz \qquad (*2)$	- 5	5	_	0.03	_	%
– 50dB Feed through Frequency	_	$R_{L} = 1k\Omega \qquad (*3)$	- 5	5	1	600	1	kHz
– 50dB Crosstalk Frequency	_	$R_{L} = 1k\Omega \qquad (*4)$	- 5	5		1		MHz
Crosstalk (CONTROL-OUT)	_	$R_{IN} = 1k\Omega$	0	5	_	200	_	
		$R_{OUT} = 10k\Omega$	0	10	_	400	—	mV
		C _L = 15pF	0	15	_	600	_	
Input Capacitance	C _{IN}	Control Input				5	7.5	
input Capacitance		Switch I/O			_	10		nE
Feed through Capacitance	C _{IN-OUT}	_			_	0.5	_	pF

^{*1} Since wave of $\pm 2.5 V_{p-p}$ shall be used for V_{IS} and the frequency of $20 log_{10}$ $\frac{V_{OS}}{V_{IS}}$

3 2001-05-31

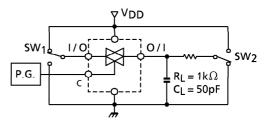
^{= -3}dB shall be f_{MAX}.

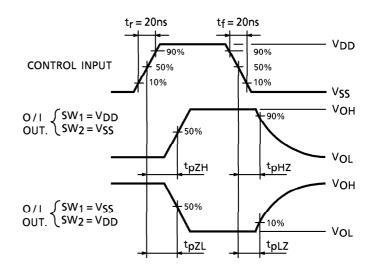

*2 V_{IS} shall be sine wave of ±2.5V_{p-p}.

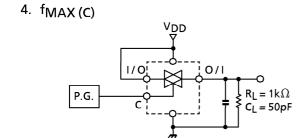

*3 Sine wave of ±2.5V_{p-p} shall be used for V_{IS} and the frequency of 20ℓog₁₀

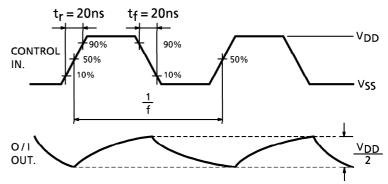
= -50dB shall be feed-through.

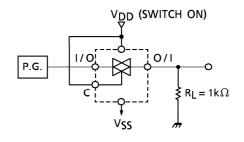
^{*4} Sine wave of $\pm 2.5V_{p-p}$ shall be used for V_{IS} and the frequency of $20log_{10}$ $\frac{V_{OUT}}{V_{IS}}$ = -50dB shall be crosstalk.

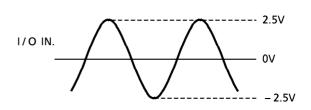

1. t_{pLH}, t_{pHL}

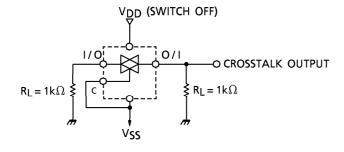


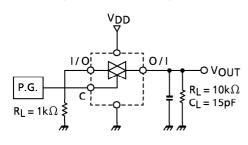

3. RON V_{DD} V_{IN} $V_{$

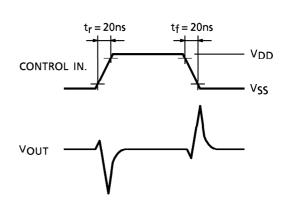

2. t_{pZL}, t_{pZH}, t_{pLZ}, t_{pHZ}
CONTROL-O/I

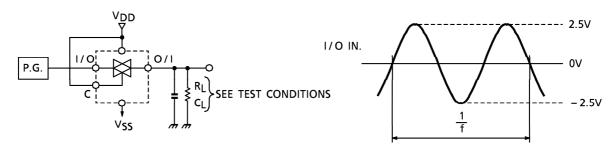



 $R_{\mbox{ON}} = 10 \times \ \frac{(\mbox{V}_{\mbox{IN}} - \mbox{V}_{\mbox{OUT}})}{\mbox{V}_{\mbox{OUT}}} (\mbox{k}\Omega)$

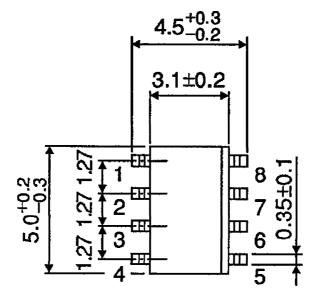


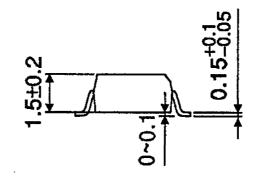

5. CROSSTALK (SWITCH I/O)





6. CROSSTALK (CONTROL INPUT)

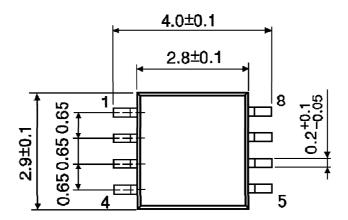

7. TOTAL HARMONIC DISTORTION, f_{MAX} (I/O-O/I), FEEDTHROUGH (SWITCH OFF)

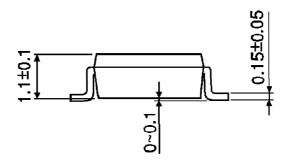


PACKAGE DIMENSIONS

SOP8-P-1.27

Unit: mm





Weight: 0.05g (Typ.)

PACKAGE DIMENSIONS SSOP8-P-0.65

Unit : mm

Weight: 0.02g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.