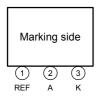
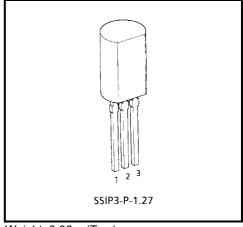
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

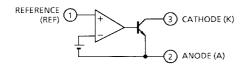

TA76431S

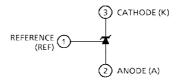

Adjustable Precision Shunt Regulator

Features

- Precision reference voltage: $V_{REF} = 2.495 \text{ V} \pm 2\%$
- Small temperature coefficient: | αV_{REF}| = 46 ppm/°C
- Adjustable output voltage: $V_{REF} \le V_{OUT} \le 36 \text{ V}$
- Low dynamic output impedance: $|Z_{KA}| = 0.15 \Omega$ (Typ.)

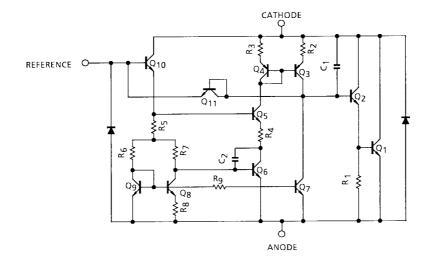
Pin Assignment





Weight: 0.36 g (Typ.)

Functional Block Diagram


Circuit Symbol

This IC contains electrostatic sensitive element. Please handle with caution.

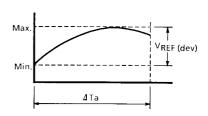
Equivalent Circuit

Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Cathode voltage		V_{KA}	37	V	
Cathode current		Ι _Κ	-100~150	mA	
Reference voltage		V_{REF}	7	V	
Reference current		I _{REF}	50	μA	
Reference-anode reverse current		-I _{REF}	10	mA	
Power dissipation	Ta = 25°C	P _D	800	mW	
Operating temperature		T _{opr}	-40~85	°C	
Storage temperature		T _{stg}	-55~150	°C	

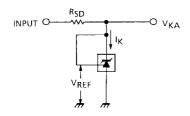
Recommended Operating Conditions

Characteristics	Symbol	Min	Тур.	Max	Unit
Cathode voltage	V_{KA}	V_{REF}	_	36	V
Cathode current	Ικ	1	_	100	mA
Operating temperature	T _{opr}	-40	_	85	°C

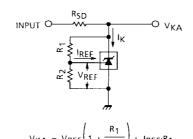

Electrical Characteristics (Unless otherwise specified, Ta = 25°C, I_K = 10 mA)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Reference voltage	V_{REF}	_	V _{KA} = V _{REF}	2.440	2.495	2.550	V
Deviation of reference input voltage over temperature	V _{REF (dev)} (Note 1)	_	0°C ≤ Ta ≤ 70°C, V _{KA} = V _{REF}	_	8	17	mV
Ratio of change in reference input voltage to the change in cathode voltage	ΔV _{REF} /ΔV	_	V _{REF} ≤ V _{KA} ≤ 10 V	-	0.8	2.7	\
		_	10 V ≤ V _{KA} ≤ 36 V	_	0.5	2.0	mV/V
Reference input current	I _{REF}	_	V _{KA} = V _{REF}		1.4	4	μΑ
Deviation of reference input current over temperature	I _{REF (dev)} (Note 1)	_	0° C ≤ Ta ≤ 70°C, V _{KA} = V _{REF} R ₁ = 10 kΩ, R ₂ = ∞	1	0.3	1.2	μΑ
Minimum cathode current for regulation	I _{Kmin}	_	V _{KA} = V _{REF}	_	0.4	1.0	mA
Off-state cathode current	I _{Koff}	_	V _{KA} = 36 V, V _{REF} = 0 V	_	_	1.0	μΑ
Dynamic impedance	Z _{KA}	_	$V_{KA} = V_{REF}, f \le 1 \text{ kHz}$ 1 mA $\le I_K \le 100 \text{ mA}$	_	0.15	0.5	Ω

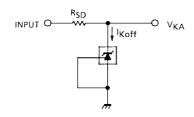
Note 1: The deviation parameters $V_{REF\ (dev)}$ and $I_{REF\ (dev)}$ are defined as the maximum variation of the V_{REF} and I_{REF} over the rated temperature range.


The average temperature coefficient of the $\ensuremath{V_{\text{REF}}}$ is defined as;

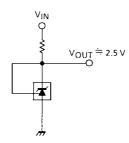
$$|\alpha V_{REF}| = \frac{\frac{V_{REF} (\text{dev})}{V_{REF} @ 25^{\circ} \text{C}} \times 10^{6}}{4 \text{ Ta}} \text{ (ppm/°C)}$$



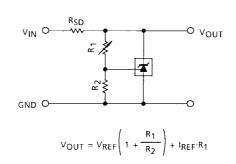
Test Parameter

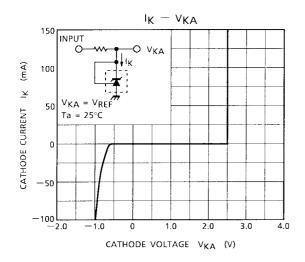

(1) $V_{KA} = V_{REF}$ mode

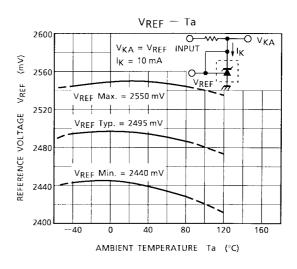
(2) $V_{KA} > V_{REF}$ mode

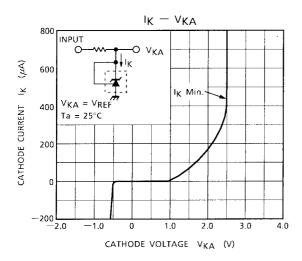


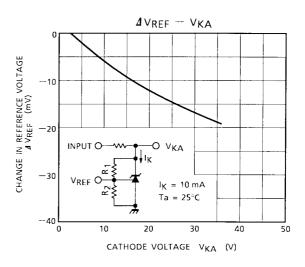
(3) Off-state mode

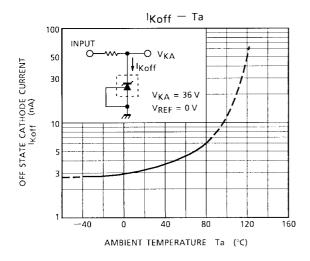


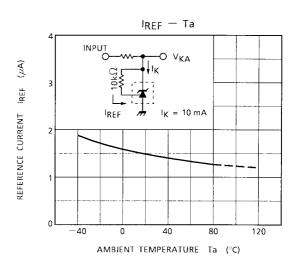

Typical Applications

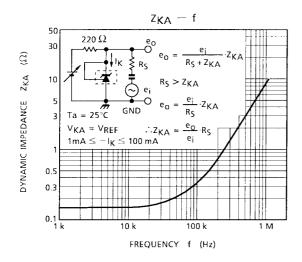

(1) 2.5 V reference

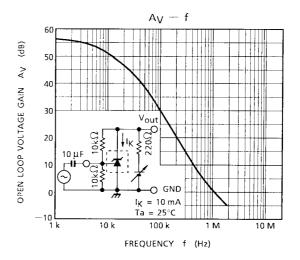


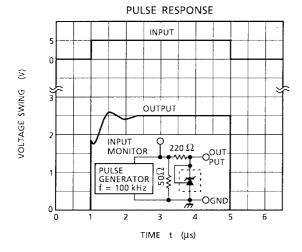

(2) Shunt regulator

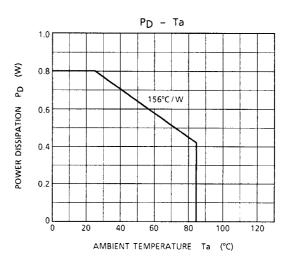


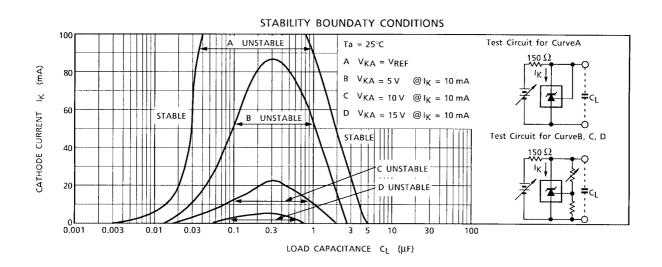


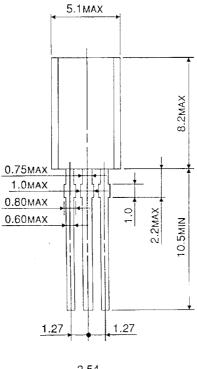


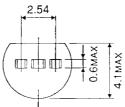







4




5

Package Dimensions

SSIP3-P-1.27

Unit: mm

Weight: 0.36 g (Typ.)

6 2001-08-08

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.