TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA1250F

4-CHANNEL RECORDING AMPLIFIER & PRE-AMPLIFIER FOR VCR

The TA1250F is a 4-channel recording amplifier and preamplifier for use in VCR. Since the recording amplifier uses a differential mechanism, it is particularly effective in reducing high-frequency even-ordered distortion. The pre-amplifier also has a differential mechanism and thus also reduces noise.

FEATURES

- Differential drive type recording amplifier
- Differential input type pre-amplifier
- Built-in envelope detector for auto-tracking
- Built-in envelope comparator for special playback
- Built-in recording mute circuit
- Board patterns can easily be shared, due to the high pin compatibility with the TA1249F 2-channel recording amplifier and pre-amplifier, and the TA1273F 6-channel recording amplifier and preamplifier.

Weight: 0.32g (Typ.)

BLOCK DIAGRAM

PIN FUNCTION ($V_{CC} = 5.0V$, Ta = 25°C)

PIN No.	FUNCTION	TYPICAL DC VOLTAGE	INTERFACE CIRCUIT	NOTES
1	Filter 4			
3	Filter 3	4.007	13 2.74	DC material Cities
12	Filter 2	1.8V	① ① 2kΩ	DC return filter
13	Filter 1		★ -	
2	ENV.COMP. OUT	_	500Ω 1 2	SP : 0V EP : 5V
4	SP Rec input and trick mode switching	Rec : 0.9V	4 WYS'1	Current input type Trick mode set when pin 4 (TP4) raised to H.
5	EP Rec input	Rec : 0.9V	2 T 15kΩ	Current input type
6	ENV.DET.OUT	_	C 2kΩ C 3kΩ C 3kΩ	_
7	GND	(0V)	_	_
8	PB RF OUT	2V	COMP COMP (SOOS	$\begin{array}{c} SP : \ 0.3mV_{p-p} \ input \\ & \downarrow 57dB \\ & 212mV_{p-p} \ output \\ EP : \ 0.3mV_{p-p} \ input \\ & \downarrow 60dB \\ & 300mV_{p-p} \ output \end{array}$
9	Vcc	(5V)	_	_
10	Head SW & Rec H	2.5V	3.2V 12.5kΩ 12.5kΩ	Refer to the head switching table in the Control Tables. TP10→H: Rec Mode

PIN No.	FUNCTION	TYPICAL DC VOLTAGE	INTERFACE CIRCUIT	NOTES		
11	Mode switching & Rec Mute	_	1.5kΩ & T	V ₁₁ voltage L : SP H : EP TP11 voltage H : Rec Mute		
14	Rec OUT1 (SP1)		(4) (20)			
18	Rec OUT2 (SP2)	Open collector	1829	_		
20	Rec OUT3 (EP1)	Open conector	` } ★	_		
24	Rec OUT4 (EP2)					
15	PB IN1 (SP1)					
17	PB IN2 (SP2)	PB : 0.9V	(1) (3) (3) (4) (4)			
21	PB IN3 (EP1)	15 . 0.5		_		
23	PB IN4 (EP2)		PB ON T			
16	Head COMMON 1	Rec : 4.3V	(B) T			
22	Head COMMON 2	PB : 0.1V	PB ON - PB ON	_		
19	Head GND	(0V)	_	_		

CONTROL TABLES

HEAD switching

	V ₁₀ voltage	SP mode	EP mode
During PB	Н	2ch	1ch
	L	1ch	2ch

(Note) The above settings are controlled by the input and output currents. Pin10 (TP10) has function of Rec H too.

MODE switching

V ₁₁ voltage	Mode
L	SP
Н	EP

(Note) Pin 11 has function of Rec Mute too.

When pin 11 (TP11) is raised to H (V_{CC}), then Rec Mute mode is set.

• Trick mode is set by raising pin 4 (TP4) to H.

EXAMPLES OF REC CURRENT SETTING

Input: 500mV_{p-p} , 4 MHz

MODE	INPUT RESISTANCE	REC CURRENT (SINGLE-CHANNEL OUTPUT)
SP	1.5k Ω	14.9mA
35	2.0k Ω	11.2mA
FP	1.5k Ω	10.5mA
EP	2.0k Ω	7.9mA

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	V _{CC}	7	V
Power Dissipation 1	P _{D1} (Note 1)	595	mW
Power Dissipation 2	P _{D2} (Note 2)	830	mW
Input Voltage	VIN	$GND - 0.3 \sim V_{CC} + 0.3$	V
Operating Temperature	T _{opr}	- 20∼75	°C
Storage Temperature	T _{stg}	- 55∼150	°C

(Note 1) Derated linearly above $Ta = 25^{\circ}C$ in the proportion of $4.8 \text{mW}/^{\circ}C$.

(Note 2) On the board mounting (Glass epoxy $50 \times 50 \times 1.6$ mm, Area of copper : 30%) Derated linearly above Ta = 25°C in the proportion of 6.7mW/°C.

RECOMMENDED POWER SUPPLY VOLTAGE RANGE

Power supply voltage: 4.5~5.5V, 5V (typical)

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V$, Ta = 25°C)

PB mode

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Power Supply Current	lccp			26	32	40	mΑ
Voltage Gain (SP Mode)	Gs1 Gs2		Innut (V1E V17 V21 V22)	54	57	60	
Voltage Gain (EP Mode)	Ge1 Ge2	 	Input (V15, V17, V21, V23) : f = 1MHz, 0.3mV _{p-p}	57	60	63	dB
Voltage Gain Difference	∆GS	_	Gs1 - Gs2	- 0.5	0	0.5	dB
Difference	∆GE GFs1		Ge1 – Ge2				
	GFs2	- - -	Input (V15, V17, V21, V23) : 0.3mV _{p-p} Output ratio 8M/1M	- 1.5	0.5	2.5	dB
Frequency Characteristic	GFe1						
	GFe2						
	HDs1		Input (V15, V17, V21, V23) :				
Secondary Harmonic	HDs2		0.3mV _{p-p}	l	- 45	– 40	dB
Distortion	HDe1		Power ratio 8M / 4M				
	HDe2		(1)				
Maximum Output Voltage	V _{oms1}	- - -	Input (V15, V17, V21, V23) :	2.0	2.2	_	
	V_{oms2}		f = 1MHz Level when thirdly harmonic distortion of output reaches				V _{p-p}
	V_{ome1}						
	V _{ome2}		– 30dB.				

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Crosstalk Between	CRS12						
Channels (SP Mode)	CRS21		Input (V15, V17, V21, V23) : f = 4MHz, 0.3mV _{p-p}	_	– 40	– 38	al D
Crosstalk Between Channels	CRE12] _	f = 4MHz, 0.3mV _{p-p} Level difference between channels.	_	- 34	- 32	dB
(EP Mode)	CRE21					52	
	CRS1E1						
	CRS1E2						
Crosstalk Between Modes	CRS2E1	- - -	Input (V15, V17, V21, V23) :		- 60	- 40	dB
	CRS2E2		$f = 4MHz$, $0.3mV_{p-p}$				
	CRE1S1		Level difference between	_			
	CRE1S2		modes.				
	CRE2S1						
	CRE2S1						
	∆Vs1s2		DC difference between outputs				
	∆Vs1e1			– 15	0	15	mV
Output DC Offeet	∆Vs1e2						
Output DC Offset	∆Vs2e1						
	∆Vs2e2	1					
	⊿Ve1e2	1					
	NS1						
Equated Input Noise	NS2		Measurement point 4MHz				
Equated input Noise	NE1] —	RBW: 10kHz	_	0.1	_	μ V _{rms}
	NE2						
ENV Det (SP Mode)	VENVS1		Input : $f = 4MHz$, $50\mu V_{p-p}$	0.4	0.7	1.0	
LIAN DEL (3º MIOUE)	VENVS2	_	Input : $f = 4MHz$, $1mV_{p-p}$	2.95	3.35	3.75) _v
ENIV Dat (ED Mada)	VENVE1	_	Input : $f = 4MHz$, $50\mu V_{p-p}$	0.8	1.1	1.4] '
ENV Det (EP Mode)	VENVE2	_	Input : $f = 4MHz$, $1mV_{p-p}$	3.3	3.7	4.1	
ENIV Comp	VCOM1	_	Selects SP head; pin 11 low	0	0.1	0.3	V
ENV Comp	VCOM2	_	Selects EP head; pin 11 high	4.7	4.9	5.0] '

REC mode (Input resistance : 1.5k Ω)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Power Supply Current	lccr	_	_	32	52	65	mA
Current Gain (SP Mode)	Grs1			32.5	33	33.5	
	Grs2		Input : f = 1MHz, 500mV _{p-p}	32.3	33	33.3	dB
Current Gain (EP Mode)	Gre1			29.1	29.6	30.1	ub
	Gre2			25.1	29.0	30.1	
	Grfs1		Input : 500mV _{p-p} Output ratio 1M / 8M	- 1.5	0	1.5	dB
Frequency Characteristic	Grfs2						
Frequency Characteristic	Grfe1] —					
	Grfe2	1					
Secondary Harmonic Distortion	HDRs1						
	HDRs2		Input : $f = 4MHz$, $500mV_{p-p}$	_	- 45	- 40	dB
	HDRe1		Output ratio 8M/4M				
	HDRe2						

CONTROL SYSTEM

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Short SW ON Resistance	R _{in}	—	_	_	6	_	Ω
Input Resistance	r _{in}	_	_	_	600	_	Ω
Rec Mute	Mute1	_	Mute ON (TP11)	4.2		5.0	V
Rec Mute	Mute2	_	Mute OFF (TP11)	0.0		3.4	V
Rec / PB	R / P1	_	Rec mode (TP10)	3.8		5.0	V
REC/ FB	R / P2		PB mode (TP10)	0.0		2.8	V
SP / EP	EPS1	_	SP mode (V ₁₁)	0.0		0.9	V
SF / EF	EPS2	_	EP mode (V ₁₁)	1.7		5.0	V
LCH / HCH	SWP1	_	LCH (V ₁₀)	0.0		1.5	V
LCH / HCH	SWP2		HCH (V ₁₀)	3.5		5.0	V
Normal / Trick	NT1	_	Normal mode (TP4)	0.0		0.4	V
Normal / Trick	NT2	_	Trick mode (TP4)	1.0			V

TEST CIRCUIT

Unit: mm

PACKAGE DIMENSIONS

SSOP24-P-300-1.00

Weight: 0.32g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.