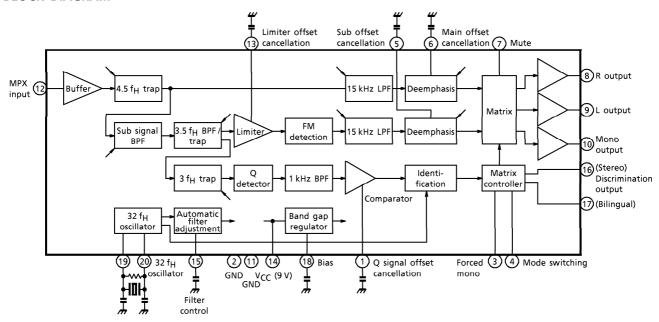
TOSHIBA TA1230Z

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


### TA1230Z

# TV SOUND MULTIPLEX BROADCAST DEMODULATOR IC FOR EIAJ SYSTEM

The TA1230Z incorporates the functions required for EIAJ system TV sound multiplex broadcast demodulation and a trap for eliminating facsimile broadcast signals multiplexed in the sound multiplex broadcasting band. Automatic adjustment based on a 32 f<sub>H</sub>-oscillator makes adjustments other than separation unnecessary.


#### **FEATURES**

- Self-adjusting filter and discriminator circuit based on a 32 f<sub>H</sub>-oscillator
- Built-in trap eliminates facsimile broadcast signals



Weight: 1.00 g (Typ.)

#### **BLOCK DIAGRAM**



980910EBA1

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- The products described in this document are subject to the foreign exchange and foreign trade laws.

  The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

#### **PIN FUNCTIONS**

| PIN<br>No. | PIN NAME                     | FUNCTION                                                                                                                                                                                                                                                                          | INTERFACE CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Q signal offset cancellation | Cuts the DC component of the circuit shaping the waveform of the AM-detected cue signal. Connect a 0.1 $\mu$ F capacitor between this pin and GND. A 0.01 $\mu$ F capacitor may cause lower discrimination sensitivity because of the fluctuations in a capacitor of that rating. | 10 10 47 KD |
| 2          | GND                          | _                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3          | Forced mono                  | Setting this pin to 5 V forcibly sets the mode to mono. This does not affect the discrimination output or bilingual broadcast decoding.  As this is the PNP transistor input circuit, leaving the pin open sets the mode to forced mono. However, do not leave the pin open.      | 14 1 1 2.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4          | Mode switching               | The voltage of this pin is used to control the output state for bilingual broadcasting.  0 V : Main sound 2.5 V : Main/sub sound 5 V : Sub sound 9 V : Main/sub sound                                                                                                             | (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5          | Sub offset<br>elimination    | Cuts the DC component of the sub sound signal processing section. Connect a 10 $\mu \rm F$ capacitor between this pin and GND.                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6          | Main offset elimination      | Cuts the DC component of the mainsound signal processing section. Connect a 10 $\mu$ F capacitor between this pin and GND.                                                                                                                                                        | (1) kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| PIN<br>No.   | PIN NAME                                                     | FUNCTION                                                                                                                                                                                                      | INTERFACE CIRCUIT                                      |
|--------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 7            | Mute                                                         | Setting this pin to 5V mutes all the outputs. Normally, fix to GND.                                                                                                                                           | 14<br>2 15 kΩ<br>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 8<br>9<br>10 | R output<br>L output<br>Mono output                          | Output pins. A mono sound signal is output from pin 10 regardless of the state of pins 3 and 4 and the broadcasting mode. Set so that the maximum current output from these pins does not exceed 500 $\mu$ A. | 100 CO VIII VIII VIII VIII VIII VIII VIII V            |
| 11           | GND                                                          | _                                                                                                                                                                                                             | _                                                      |
| 12           | MPX input                                                    | Sound multiplex signal input pin. The input resistance is $10k\Omega$ (Typ.). The standard input level is $250\text{mV}_{\text{rms}}$ (Equivalent to $100\%$ modulation)                                      |                                                        |
| 13           | Limiter offset elimination                                   | Cuts the DC component of the sub-sound signal demodulation section. Connect a 0.01 $\mu {\rm F}$ capacitor between this pin and GND.                                                                          | 9.5 kΩ                                                 |
| 14           | vcc                                                          | The operating power supply voltage range is 9 V ± 10%.                                                                                                                                                        | _                                                      |
| 15           | Filter control                                               | Used for the automatic filter adjustment circuit incorporated into the IC. Connect a 0.01 $\mu \rm F$ capacitor between this pin and GND.                                                                     | (5) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1     |
| 16<br>17     | Stereo discrimination output Bilingual discrimination output | Broadcast mode discrimination output pins. This circuit is an open collector whose maximum sink current is 1 mA.                                                                                              | 16 100 Ω<br>17 100 Ω                                   |

| PIN<br>No. | PIN NAME                      | FUNCTION                                                                                                                                                                               | INTERFACE CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18         | Bias                          | Eliminates IC internal bias noise. Connect a 10 $\mu {\rm F}$ capacitor between this pin and GND.                                                                                      | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 19<br>20   | 32 f <sub>H</sub> oscillation | Ceramic oscillator connecting pins. TA1230Z uses this oscillation to automatically adjust the internal filter and to perform discrimination. Use a Murata CSB503E7 ceramic oscillator. | (a) 100 Cl (b) 100 Cl (c) 100 Cl |

TOSHIBA TA1230Z

#### **ABSOLUTE RATINGS** (Ta = $25^{\circ}$ C)

| CHARACTERISTIC        | SYMBOL           | RATING          | UNIT |
|-----------------------|------------------|-----------------|------|
| Supply Voltage        | Vcc              | 15              | V    |
| Power Dissipation     | PD               | 890             | mW   |
| Operating Temperature | T <sub>opr</sub> | <b>− 20~75</b>  | °C   |
| Storage Temperature   | T <sub>str</sub> | <b>-</b> 55∼150 | °C   |

(Note) The power dissipation rating drops by 7.2 mW for every 1°C over 25°C.

#### **RECOMMENDED SUPPLY VOLTAGE**

| PIN No. | PIN NAME | MIN. | TYP. | MAX. | UNIT |
|---------|----------|------|------|------|------|
| 14      | Vcc      | 8.1  | 9.0  | 9.9  | V    |

## **ELECTRICAL CHARACTERISTICS** (Unless otherwise specified, $V_{CC}$ = 9 V, Ta = 25°C) DC CHARACTERISTICS

| CHARACTERISTIC      | SYMBOL          | TEST<br>CIR-<br>CUIT | TEST CONDITION | MIN. | TYP. | MAX. | UNIT |
|---------------------|-----------------|----------------------|----------------|------|------|------|------|
| Current Dissipation | lcc             | _                    | _              | 28   | 34   | 42   | mΑ   |
|                     | V <sub>1</sub>  | _                    | _              | 4.2  | 5.2  | 6.2  |      |
|                     | V <sub>5</sub>  | _                    | _              | 3.5  | 4.5  | 5.5  |      |
|                     | V <sub>6</sub>  | _                    |                | 3.5  | 4.5  | 5.5  |      |
|                     | V <sub>8</sub>  | _                    | _              | 2.1  | 3.1  | 4.1  |      |
|                     | V <sub>9</sub>  | _                    | _              | 2.1  | 3.1  | 4.1  |      |
| Din Valtage         | V <sub>10</sub> |                      | _              | 2.1  | 3.1  | 4.1  | .,   |
| Pin Voltage         | V <sub>12</sub> | _                    | _              | 3.5  | 4.5  | 5.5  | V    |
|                     | V <sub>13</sub> | _                    | _              | 2.8  | 3.9  | 4.9  |      |
|                     | V <sub>15</sub> | _                    | _              | 2.5  | 4.5  | 6.5  |      |
|                     | V <sub>18</sub> | _                    | <del>-</del>   | 5.0  | 5.7  | 6.4  |      |
|                     | V <sub>19</sub> | _                    | _              | 3.5  | 4.5  | 5.5  |      |
|                     | V <sub>20</sub> |                      | _              | 7.0  | 7.6  | 8.2  |      |

#### AC CHARACTERISTICS

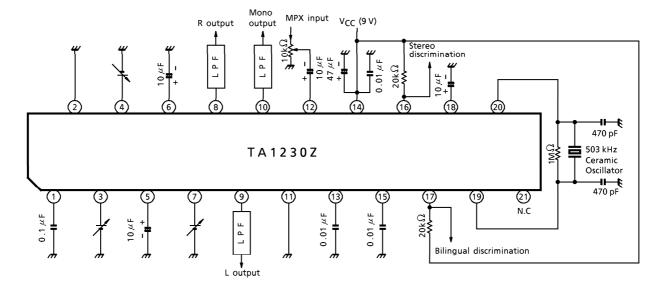
| AC CHARACTERISTICS          |                     |                  |                      |                   |      |      |      |                   |  |
|-----------------------------|---------------------|------------------|----------------------|-------------------|------|------|------|-------------------|--|
| CHAF                        | RACTERISTIC         | SYMBOL           | TEST<br>CIR-<br>CUIT | TEST<br>CONDITION | MIN. | TYP. | MAX. | UNIT              |  |
| Output Level                |                     | Vout             | _                    | (Note 1)          | 500  | 600  | 700  | mV <sub>rms</sub> |  |
| Output Level Flu            | ctuation            | ∆Vout            | _                    | (Note 2)          | _    | 0.0  | 1.5  | dB                |  |
| Sub Output Leve             | l Power Dependency  | ∆VSUB            | _                    | (Note 3)          | _    | 0.0  | 0.5  | dB                |  |
|                             | Main Sound 100 Hz   | A100 M           | _                    |                   | 0.0  | 1.0  | 2.5  |                   |  |
| Frequency                   | Main Sound 10 kHz   | A10k M           | _                    | (Note 4)          | - 16 | - 13 | - 10 | -ID               |  |
| Characteristics             | Sub Sound 100 Hz    | A100 S           | _                    | (Note 4)          | 0.0  | 1.0  | 2.5  | dB                |  |
|                             | Sub Sound 10 kHz    | A10k S           | _                    |                   | - 16 | - 13 | - 10 |                   |  |
| Total Harmonic              | Main Sound          | THD M            | _                    | (Note 5)          | _    | 0.2  | 1.0  | - %               |  |
| Distortion                  | Sub Sound           | THD \$           | _                    | (Note 5)          | _    | 0.7  | 1.0  | %                 |  |
| S/N                         | Main Sound          | S/N M            |                      | (Note 6)          | 70   | 75   | _    | 4p                |  |
| 3 / IN                      | Sub Sound           | S/N S            | _                    | (Note 6)          | 60   | 65   | _    | dB                |  |
| Carrier Leakers             | Main Sound          | VLeak M          | _                    | (Note 7)          | _    | 50   | 70   | mV <sub>p-p</sub> |  |
| Carrier Leakage             | Sub Sound           | VLeak S          | _                    | (Note /)          | _    | 50   | 70   |                   |  |
| Stereo Separation           | n e                 | Sepa             | _                    | (Note 8)          | 34   | _    | _    | dB                |  |
| Bilingual Crosstal          | k                   | СТ               | _                    | (Note 9)          | 60   |      | _    | dB                |  |
|                             | Main (Max.)         | Vmax M           | _                    | (Note 10)         | 1.0  |      | _    | - V               |  |
| Dilingual Mada              | Main/Sub (1) (Min.) | Vmin B (1)       | _                    |                   |      | _    | 1.2  |                   |  |
| Bilingual Mode<br>Switching | Main/Sub (1) (Max.) | Vmax B (1)       | _                    |                   | 2.9  |      |      |                   |  |
| Voltage                     | Sub (Min.)          | Vmin S           | _                    |                   |      |      | 4.2  |                   |  |
| Voltage                     | Sub (Max.)          | Vmax S           | _                    |                   | 5.4  |      |      |                   |  |
|                             | Main/Sub (2) (Min.) | Vmin B (2)       | _                    |                   |      |      | 6.6  |                   |  |
| Forced Mono                 | Off Voltage         | Vmin FMono       | _                    | (Note 11)         | 2.4  | _    |      | V                 |  |
| Voltage                     | On Voltage          | Vmax FMono       | _                    | (NOCE II)         |      |      | 2.6  | _ <b>'</b>        |  |
| Mute on Voltage             |                     | V Mute           | _                    | (Note 12)         | _    | _    | 2.0  | V                 |  |
| Mute Residual No            | oise                | V Mute           | _                    | (Note 13)         | _    | _    | 1.5  | mV <sub>p-p</sub> |  |
| Mute DC                     | L/R Output          | Vos              | _                    | (Note 14)         | _    | 5    | 100  | mV                |  |
| Offset Voltage              | M Output            |                  | _                    | (140 (2 14)       |      |      | 300  | 1110              |  |
| Sub Carrier Sensi           |                     | S <sub>SUB</sub> | _                    | (Note 15)         | _    |      | 12   | dB                |  |
| Cue Signal                  | No Modulation       | SQo              | _                    |                   | 8    |      | _    |                   |  |
| Sensitivity                 | L-R 900 Hz 100%     | SQ900            | _                    | (Note 16)         | 6    |      | _    | dB                |  |
| 3ensitivity                 | Sub Sound 1kHz 100% | SQ1k             | _                    |                   | 6    |      | _    |                   |  |
| Input Resistance            |                     | R <sub>IN</sub>  | _                    | (Note 17)         | 7    | 10   | 13   | kΩ                |  |
| Output Resistance           | e                   | ROUT             | _                    | (Note 18)         | 70   | 100  | 130  | Ω                 |  |

#### **TEST CONDITIONS**

| NOTE | INPUT                                        | MC    | DE SETTI | NG    | TECT DIN      | TEST METUOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|----------------------------------------------|-------|----------|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE | SIGNAL                                       | PIN 3 | PIN 4    | PIN 7 | TEST PIN      | TEST METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1    | Signal A                                     | 0 [V] | 0 [V]    | 0 [V] | Pins 8, 9, 10 | Measure the output level of each pin (V <sub>OUT</sub> [mV <sub>rms</sub> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2    | Signal A                                     | 0 [V] | 0 [V]    | 0 [V] | Pins 8, 9     | Calculate the output level ratio between pins 8 and 9 (V <sub>8</sub> , V <sub>9</sub> ). $\Delta$ VOUT [dB] = 20· $ \ell$ og (V <sub>8</sub> /V <sub>9</sub> ) $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3    | Signal B                                     | 0 [V] | 5 [V]    | 0 [V] | Pins 8, 9     | Raise $V_{CC}$ from 8.1V to 9.9 V and measure the output level $(V_V')$ . Calculate the ratio against the output level $(V_V)$ when $V_{CC} = 9V$ . $\Delta V_{CC} = 20 \cdot  \ell_{CC}  $ |
| 4    | Signal A<br>Signal B<br>Signal C<br>Signal D | 0 [V] | 0/5 [V]  | 0 [V] | Pins 8, 9     | Set pin 4 to 0 V. Input signal A and measure the output level ( $V_{M1k}$ ). Next, input signal C, D and measure its output level at 100 Hz and 10 kHz ( $V_{M100}$ and $V_{M10k}$ ).  A100 M [dB] = 20 $\ell$ og ( $V_{M100}/V_{M1k}$ ) A10k M [dB] = 20 $\ell$ og ( $V_{M10k}/V_{M1k}$ ) Set pin 4 to 5 V. Input signal B and measure the output level ( $V_{S1k}$ ). Next, input signal C, D and measure its output level at 100 Hz and 10 kHz ( $V_{S100}$ and $V_{S10k}$ ).  A100 S [dB] = 20 $\ell$ og ( $V_{S100}/V_{S1k}$ ) A10k S [dB] = 20 $\ell$ og ( $V_{S10k}/V_{S1k}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5    | Signal A<br>Signal B                         | 0 [V] | 0/5 [V]  | 0 [V] | Pins 8, 9     | Set pin 4 to 0 V. Input signal A and measure the distortion factor (THD M [%]).  Set pin 4 to 5 V. Input signal B and measure the distortion factor (THD S [%]).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6    | Signal A<br>Signal B<br>Signal E             | 0 [V] | 0/5 [V]  | 0 [V] | Pins 8, 9     | Set pin 4 to 0 V. Input signal B and measure the output level (S <sub>M</sub> ). Next, measure its output level (N <sub>M</sub> ) on no signal input condition.  S/N M [dB] = 20 log (S <sub>M</sub> /N <sub>M</sub> )  Set pin 4 to 5 V. Input signal B and measure the output level (S <sub>S</sub> ). Next, input signal E and measure its output level (N <sub>S</sub> ).  S/N M [dB] = 20 log (S <sub>S</sub> /N <sub>S</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7    | Signal E                                     | 0 [V] | 0/5 [V]  | 0 [V] | Pins 8, 9     | Set pin 4 to 0 V and set LPF output to through. Measure the output level (VLeak M). Set pin 4 to 5 V and set LPF output to through. Measure the output level (VLeak S).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

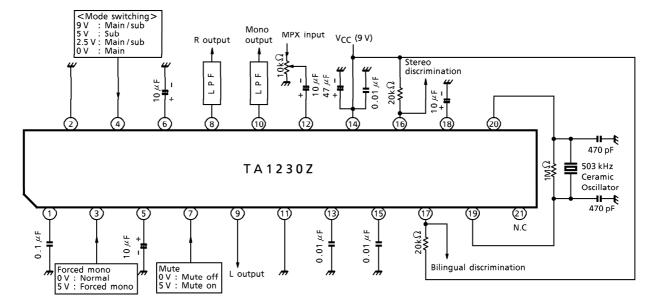
| NOTE | INPUT     | MC       | DE SETTI | NG       | TECT DIN      | TEST METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|-----------|----------|----------|----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE | SIGNAL    | PIN 3    | PIN 4    | PIN 7    | TEST PIN      | TEST METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8    | Signal F  | 0 [V]    | 0 [V]    | 0 [V]    | Pins 8, 9     | Adjust the input signal amplitude so that the output level of pin 8 is at minimum.  Measure the output levels of 1 kHz spectrum of pin 8 (Vg) and pin 9 (Vg) by a spectrum analyzer.  Sepa [dB] = 20 log (Vg/Vg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9    | Signal H  | 0 [V]    | 2.5 [V]  | 0 [V]    | Pins 8, 9     | Measure the output levels of 1 kHz spectrum of pin 8 (V <sub>8</sub> ) and pin 9 (V <sub>9</sub> ) by a spectrum analyzer.  CT [dB] = $20 \log (V_9/V_8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10   | Signal I  | 0 [V]    | Variable | 0 [V]    | Pin 4         | Raise the voltage of pin 4 from 0 V. Measure the upper limit voltage (Vmax M [V]) holding the output from pin 8 at 1 kHz. Reduce the voltage of pin 4 from 2.5 V. Measure the lower limit voltage (Vmin B (1) [V]) holding the output from pin 8 at 400 Hz. Raise the voltage of pin 4 from 2.5 V. Measure the upper limit voltage (Vmax B (1) [V]) holding the output from pin 9 at 1 kHz. Reduce the voltage of pin 4 from 5 V. Measure the lower limit voltage (Vmin B (1) [V]) holding the output from pin 9 at 400 Hz. Raise the voltage of pin 4 from 5 V. Measure the upper limit voltage (Vmax S [V]) holding the output from pin 9 at 400 Hz. Reduce the voltage of pin 4 from 9 V. Measure the lower limit voltage (Vmin B (2) [V]) holding the output from pin 9 at 1 kHz. |
| 11   | Signal E  | Variable | 0 [V]    | 0 [V]    | Pin 3         | Raise the voltage of pin 3 from 0 V. Measure the upper limit voltage (Vmax FMono [V]) holding the output from pin 8 to 0 V. Reduce the voltage of pin 3 from 5 V. Measure the lower limit voltage (Vmin FMono [V]) holding the output from pin 8 at 1 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12   | Signal A  | 0 [V]    | 0 [V]    | Variable | Pin 7         | Raise the voltage of pin 7 from 0 V. Measure the voltage (Vmute [V]) when the output from pin 8 or pin 9 changes to 0 V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13   | Signal A  | 0 [V]    | 0 [V]    | 5 [V]    | Pins 8, 9, 10 | Measure the output levels of the pins (VMute [mV <sub>p-p</sub> ]).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14   | No signal | 0 [V]    | 0 [V]    | 0/5 [V]  | Pins 8, 9, 10 | Switch the pin 7 voltage between 0 V and 5 V. Measure the DC voltage change of the pins (VOS [V]).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### **TEST CONDITIONS**


| NOTE | INPUT                            | MC    | DE SETTI | NG    | TEST PIN      | TEST METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|----------------------------------|-------|----------|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE | SIGNAL                           | PIN 3 | PIN 4    | PIN 7 | I EST PIN     | TEST WIETHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15   | Signal J                         | 0 [V] | 0 [V]    | 0 [V] | Pin 17        | Input signal J. Lower the 31.47 [kHz] signal level from 150 [mV <sub>rms</sub> ]. Measure the 31.47 [kHz] signal level when the pin 17 voltage changes to 9 [V] (VSUB).  S SUB = 20 log (150 / VSUB) [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16   | Signal K<br>Signal L<br>Signal M | 0 [V] | 0 [V]    | 0 [V] | Pins 16, 17   | Input signal K. Lower the cue signal level from 20 mV <sub>rms</sub> . Measure the cue signal level when the pin 17 voltage changes to 9 V (V Qo [mV <sub>rms</sub> ]) S Qo [dB] = $20 \log (20 / \text{VQo})$ Input signal L. Lower the cue signal level from $20 \text{mV}_{\text{rms}}$ . Measure the cue signal level when the pin 17 voltage changes to 9 V (VQ900 [mV <sub>rms</sub> ]) S Q900 [dB] = $20 \log (20 / \text{VQ900})$ . Input signal M. Lower the cue signal level from $20 \text{ [mV}_{\text{rms}}$ ]. Measure the cue signal level when the pin 16 voltage changes to 9 V (VQ1k [mV <sub>rms</sub> ]) S Q1k [dB] = $20 \log (20 / \text{VQ1k})$ . |
| 17   | Signal A                         | 0 [V] | 0 [V]    | 0 [V] | Pin 12        | Measure the input resistance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18   | Signal A                         | 0 [V] | 0 [V]    | 0 [V] | Pins 8, 9, 10 | Measure the output resistance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### **INPUT SIGNAL TABLE**

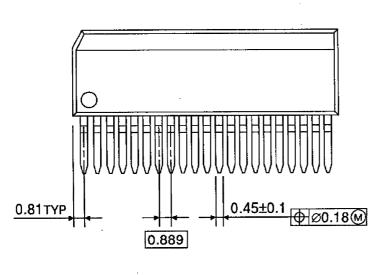
| SIGNAL   | MAIN SIGNAL          | SUB S                   | IGNAL                       | CUE SIGNAL             |                  |  |
|----------|----------------------|-------------------------|-----------------------------|------------------------|------------------|--|
| SIGNAL   | MAIN SIGNAL          | CARRIER                 | MODULATION                  | CARRIER                | MODULATION       |  |
| Signal A | 1 kHz,<br>250 mVrms  | No signal               | _                           | No signal              | _                |  |
| Signal B | No signal            | 31.47 kHz,<br>150 mVrms | 1 kHz, 100% FM              | 55.07 kHz,<br>20 mVrms | 922.5 Hz, 60%AM  |  |
| Signal C | 100Hz,<br>250 mVrms  | 31.47 kHz,<br>150 mVrms | 100Hz, 100% FM              | 55.07 kHz,<br>20 mVrms | 922.5 Hz, 60% AM |  |
| Signal D | 10 kHz,<br>250 mVrms | 31.47 kHz,<br>150 mVrms | 10 kHz, 100% FM             | 55.07 kHz,<br>20 mVrms | 922.5 Hz, 60%AM  |  |
| Signal E | No signal            | 31.47 kHz,<br>150 mVrms | No signal                   | 55.07 kHz,<br>20 mVrms | 922.5 Hz, 60%AM  |  |
| Signal F | 1 kHz,<br>125 mVrms  | 31.47 kHz,<br>200 mVrms | 1 kHz (In-phase),<br>50% FM | 55.07 kHz,<br>20 mVrms | 982.5 Hz, 60%AM  |  |
| Signal G | 1 kHz,<br>250 mVrms  | 31.47 kHz,<br>150 mVrms | No signal                   | 55.07 kHz,<br>20 mVrms | 922.5 Hz, 60% AM |  |
| Signal H | 1 kHz,<br>250 mVrms  | 31.47 kHz,<br>150 mVrms | 1 kHz, 100% FM              | 55.07 kHz,<br>20 mVrms | 922.5 Hz, 60% AM |  |
| Signal I | 1 kHz,<br>250 mVrms  | 31.47 kHz,<br>150 mVrms | 400Hz, 100% FM              | 55.07 kHz,<br>20 mVrms | 922.5 Hz, 60% AM |  |
| Signal J | No signal            | 31.47 kHz,<br>Variable  | No signal                   | 55.07 kHz,<br>20 mVrms | 922.5 Hz, 60%AM  |  |
| Signal K | No signal            | 31.47 kHz,<br>150 mVrms | No signal                   | 55.07 kHz,<br>Variable | 922.5 Hz, 60%AM  |  |
| Signal L | No signal            | 31.47 kHz,<br>200 mVrms | 900Hz, 100% FM              | 55.07 kHz,<br>Variable | 982.5 Hz, 60%AM  |  |
| Signal M | No signal            | 31.47 kHz,<br>150 mVrms | 1 kHz, 100% FM              | 55.07 kHz,<br>Variable | 922.5 Hz, 60%AM  |  |

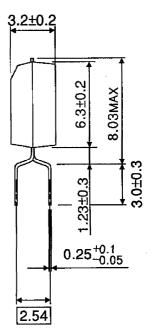

TOSHIBA TA1230Z

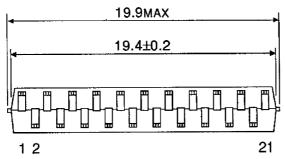
#### **TEST CIRCUIT**



LFP: 4-stage Butterworth, cutoff frequency 15 kHz


#### **APPLICATION CIRCUIT**





Ceramic oscillator: CSB503E7 (Murata)

#### OUTLINE DRAWING SZIP21-P-0.89

Unit: mm







Weight: 1.00 g (Typ.)