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This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

PRELIMINARY DATA

The ST6x86 microprocessor is a superscalar,
superpipelined CPU that provides sixth-generation
performance for x86 software. Since the ST6x86
CPU is fully compatible with the x86 instruction
set, it is capable of executing a wide range of exist-
ing operating systems and applications, including
Windows 95, DOS, Unix, Windows NT, Novell,
OS/2, and Solaris. The ST6x86 CPU achieves top
performance levels through the use of two opti-
mized superpipelined integer units and an on-chip
floating point unit. The superpipelined architecture
reduces timing constraints and allows the ST6x86
CPU to achieve P90+ performance levels and

above. In addition, the ST6x86 CPU’s integer and
floating point units are optimized for maximum
instruction throughput by using advanced architec-
tural techniques, including register renaming,
out-of-order execution, data forwarding, branch
prediction, and speculative execution. These
design innovations eliminate many data depen-
dencies and resource conflicts that provide opti-
mum performance for Windows 95 software.

Sixth-Generation Superscalar Superpipelined
Architecture
- Dual 7-stage integer pipelines
- High performance on-chip FPU with 64-bit

interface
- Operating at P90+ speeds and above
- 16-KByte write-back cache

X86 Instruction Set Compatible
- Runs Windows 95, Windows NT, DOS, UNIX,

Novell, OS/2, Solaris, and others

Optimum Performance for Windows  95
- Intelligent instruction dispatch
- Out-of-order execution
- Register renaming
- Data forwarding
- Branch prediction
- Speculative execution

64-Bit Data Bus
- P54C socket compatible for quick time to

market
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1.0 ARCHITECTURE OVERVIEW

The SGS-THOMSON ST6x86 CPU is a leader in
the sixth generation of high performance,
x86-compatible microprocessors. Increased per-
formance is accomplished by the use of supersca-
lar and superpipelined design techniques.

The ST6x86 CPU is superscalar in that it contains
two separate pipelines that allow multiple instruc-
tions to be processed at the same time. The use of
advanced processing technology and the
increased number of pipeline stages (superpipelin-
ing) allow the ST6x86 CPU to achieve clocks rates
of 80, 100, 110, 120, 133 MHz and above.

Through the use of unique architectural features,
the ST6x86 processor eliminates many data
dependencies and resource conflicts, resulting in
optimal performance for both 16-bit and 32-bit x86
software.

The ST6x86 CPU contains two caches: a
16-KByte dual-ported unified cache and a
256-byte instruction line cache. Since the unified
cache can store instructions and data in any ratio,
the unified cache offers a higher hit rate than sepa-
rate data and instruction caches of equal size. An
increase in overall cache-to-integer unit bandwidth
is achieved by supplementing the unified cache
with a small, high-speed, fully associative instruc-
tion line cache. The inclusion of the instruction line
cache avoids excessive conflicts between code
and data accesses in the unified cache.

The on-chip FPU allows floating point instructions
to execute in parallel with integer instructions and
features a 64-bit data interface. The FPU incorpo-
rates a four-deep instruction queue and a
four-deep store queue to facilitate parallel execu-
tion.

The ST6x86 CPU operates from a 3.3 volt power
supply resulting in reasonable power consumption
at all frequencies. In addition, the ST6x86 CPU
incorporates a low power suspend mode, stop
clock capability, and system management mode
(SMM) for power sensitive applications.

1.1 Major Functional Blocks

The ST6x86 processor consists of five major func-
tional blocks, as shown in the overall block dia-
gram on the first page of this manual:

- Integer Unit
- Cache Unit
- Memory Management Unit
- Floating Point Unit
- Bus Interface Unit

Instructions are executed in the X and Y pipelines
within the Integer Unit and also in the Floating
Point Unit (FPU). The Cache Unit stores the most
recently used data and instructions to allow fast
access to the information by the Integer Unit and
FPU.

Physical addresses are calculated by the Memory
Management Unit and passed to the Cache Unit
and the Bus Interface Unit (BIU). The BIU provides
the interface between the external system board
and the processor’s internal execution units.
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1.2 Integer Unit

The Integer Unit (Figure 1.1) provides parallel
instruction execution using two seven-stage inte-

ger pipelines. Each of the two pipelines, X and Y,
can process several instructions simultaneously.

Figure 1.1. Integer Unit
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The Integer Unit consists of the following pipeline
stages:

- Instruction Fetch (IF)
- Instruction Decode 1 (ID1)
- Instruction Decode 2 (ID2)
- Address Calculation 1 (AC1)
- Address Calculation 2 (AC2)
- Execute (EX)
- Write-Back (WB)

The instruction decode and address calculation
functions are both divided into superpipelined
stages.

1.2.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by both
the X and Y pipelines, fetches 16 bytes of code
from the cache unit in a single clock cycle. Within
this section, the code stream is checked for any
branch instructions that could affect normal pro-
gram sequencing.

If an unconditional or conditional branch is
detected, branch prediction logic within the IF
stage generates a predicted target address for the
instruction. The IF stage then begins fetching
instructions at the predicted address.

The superpipelined Instruction Decode function
contains the ID1 and ID2 stages. ID1, shared by
both pipelines, evaluates the code stream pro-
vided by the IF stage and determines the number
of bytes in each instruction. Up to two instructions
per clock are delivered to the ID2 stages, one in
each pipeline.

The ID2 stages decode instructions and send the
decoded instructions to either the X or Y pipeline
for execution. The particular pipeline is chosen,
based on which instructions are already in each
pipeline and how fast they are expected to flow
through the remaining pipeline stages.

The Address Calculation function contains two
stages, AC1 and AC2. If the instruction refers to a
memory operand, the AC1 calculates a linear
memory address for the instruction.

The AC2 stage performs any required memory
management functions, cache accesses, and reg-
ister file accesses. If a floating point instruction is
detected by AC2, the instruction is sent to the FPU
for processing.

The Execute (EX) stage executes instructions
using the operands provided by the address calcu-
lation stage.

The Write-Back (WB) stage is the last IU stage.
The WB stage stores execution results either to a
register file within the IU or to a write buffer in the
cache control unit.

1.2.2 Out-of-Order Processing

If an instruction executes faster than the previous
instruction in the other pipeline, the instructions
may complete out of order. All instructions are pro-
cessed in order, up to the EX stage. While in the
EX and WB stages, instructions may be completed
out of order.

If there is a data dependency between two instruc-
tions, the necessary hardware interlocks are
enforced to ensure correct program execution.
Even though instructions may complete out of
order, exceptions and writes resulting from the
instructions are always issued in program order.
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1.2.3 Pipeline Selection

In most cases, instructions are processed in either
pipeline and without pairing constraints on the
instructions. However, certain instructions are pro-
cessed only in the X pipeline:

- Branch instructions
- Floating point instructions
- Exclusive instructions

Branch and floating point instructions may be
paired with a second instruction in the Y pipeline.

Exclusive Instructions cannot be paired with
instructions in the Y pipeline. These instructions
typically require multiple memory accesses.
Although exclusive instructions may not be paired,
hardware from both pipelines is used to accelerate
instruction completion. Listed below are the
ST6x86 CPU exclusive instruction types:

- Protected mode segment loads
- Special register accesses

(Control, Debug, and Test Registers)
- String instructions
- Multiply and divide
- I/O port accesses
- Push all (PUSHA) and pop all (POPA)
- Intersegment jumps, calls, and returns

1.2.4 Data Dependency Solutions

When two instructions that are executing in paral-
lel require access to the same data or register, one
of the following types of data dependencies may
occur:

- Read-After-Write (RAW)
- Write-After-Read (WAR)
- Write-After-Write (WAW)

Data dependencies typically force serialized exe-
cution of instructions. However, the ST6x86 CPU
implements three mechanisms that allow parallel
execution of instructions containing data depen-
dencies:

- Register Renaming
- Data Forwarding
- Data Bypassing

The following sections provide detailed examples
of these mechanisms.

1.2.4.1 Register Renaming

The ST6x86 CPU contains 32 physical general
purpose registers. Each of the 32 registers in the
register file can be temporarily assigned as one of
the general purpose registers defined by the x86
architecture (EAX, EBX, ECX, EDX, ESI, EDI,
EBP, and ESP). For each register write operation a
new physical register is selected to allow previous
data to be retained temporarily. Register renaming
effectively removes all WAW and WAR dependen-
cies. The programmer does not have to consider
register renaming; it is completely transparent to
both the operating system and application soft-
ware.
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Example #1 - Register Renaming Eliminates Write-After-Read (WAR) Dependency

A WAR dependency exists when the first in a pair of instructions reads a logical register, and the second
instruction writes to the same logical register. This type of dependency is illustrated by the pair of instruc-
tions shown below:

X PIPE Y PIPE

(1) MOV BX, AX (2) ADD AX, CX
BX ← AX AX ← AX + CX

Note: In this and the following examples the original instruction order is shown in parentheses.

In the absence of register renaming, the ADD instruction in the Y pipe would have to be stalled to allow
the MOV instruction in the X pipe to read the AX register.

The ST6x86 CPU, however, avoids the Y pipe stall (Table 1.1). As each instruction executes, the results
are placed in new physical registers to avoid the possibility of overwriting a logical register value and to
allow the two instructions to complete in parallel (or out of order) rather than in sequence.

Table 1.1. Register Renaming with WAR Dependency

Instruction

Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Reg4 Pipe

(Initial) AX BX CX

MOV BX, AX AX CX BX X Reg3 ← Reg0

ADD AX, CX CX BX AX Y Reg4 ← Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1.1
are completely independent.
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Example #2 - Register Renaming Eliminates Write-After-Write (WAW) Dependency

A WAW dependency occurs when two consecutive instructions perform writes to the same logical regis-
ter. This type of dependency is illustrated by the pair of instructions shown below:

X PIPE Y PIPE

(1) ADD AX, BX (2) MOV AX, [mem]
AX ←AX + BX AX ← [mem]

Without register renaming, the MOV instruction in the Y pipe would have to be stalled to guarantee that
the ADD instruction in the X pipe would write its results to the AX register first.

The ST6x86 CPU uses register renaming and avoids the Y pipe stall. The contents of the AX and BX reg-
isters are placed in physical registers (Table 1.2). As each instruction executes, the results are placed in
new physical registers to avoid the possibility of overwriting a logical register value and to allow the two
instructions to complete in parallel (or out of order) rather than in sequence.

Table 1.2. Register Renaming with WAW Dependency

Instruction

Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ← Reg0 + Reg1

MOV AX, [mem] BX AX Y Reg3 ← [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV
instruction.
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1.2.4.2 Data Forwarding

Register renaming alone cannot remove RAW
dependencies. The ST6x86 CPU uses two types
of data forwarding in conjunction with register
renaming to eliminate RAW dependencies:

- Operand Forwarding
- Result Forwarding

Operand forwarding takes place when the first in a
pair of instructions performs a move from register
or memory, and the data that is read by the first
instruction is required by the second instruction.
The ST6x86 CPU performs the read operation and
makes the data read available to both instructions
simultaneously.

Result forwarding takes place when the first in a
pair of instructions performs an operation (such as
an ADD) and the result is required by the second
instruction to perform a move to a register or mem-
ory. The ST6x86 CPU performs the required oper-
ation and stores the results of the operation to the
destination of both instructions simultaneously.
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Example #3 - Operand Forwarding Eliminates Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a pair of instructions performs a write, and the second
instruction reads the same register. This type of dependency is illustrated by the pair of instructions
shown below in the X and Y pipelines:

X PIPE Y PIPE

(1) MOV AX, [mem] (2) ADD BX, AX
AX ← [mem] BX ← AX + BX

The ST6x86 CPU uses operand forwarding and avoids a Y pipe stall (Table 1.3). Operand forwarding
allows simultaneous execution of both instructions by first reading memory and then making the results
available to both pipelines in parallel.

Table 1.3. Example of Operand Forwarding

Operand forwarding can only occur if the first instruction does not modify its source data. In other words,
the instruction is a move type instruction (for example, MOV, POP, LEA). Operand forwarding occurs for
both register and memory operands. The size of the first instruction destination and the second instruc-
tion source must match.

Instruction

Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe

(Initial) AX BX

MOV AX, [mem] BX AX X Reg2 ← [mem]

ADD BX, AX AX BX Y Reg3 ← [mem] + Reg1
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Example #4 - Result Forwarding Eliminates Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a write, and
the second instruction reads the same register. This dependency is illustrated by the pair of instructions
in the X and Y pipelines, as shown below:

X PIPE Y PIPE

(1) ADD AX, BX (2) MOV [mem], AX
AX ←AX + BX [mem] ← AX

The ST6x86 CPU uses result forwarding and avoids a Y pipe stall (Table 1.4). Instead of transferring the
contents of the AX register to memory, the result of the previous ADD instruction (Reg0 + Reg1) is written
directly to memory, thereby saving a clock cycle.

Table 1.4. Result Forwarding Example

The second instruction must be a move instruction and the destination of the second instruction may be
either a register or memory.

Instruction

Physical Register Contents Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ←Reg0 + Reg1

MOV [mem], AX BX AX Y [mem] ← Reg0 +Reg1
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1.2.4.3 Data Bypassing

In addition to register renaming and data forwarding, the ST6x86 CPU implements a third data depen-
dency-resolution technique called data bypassing. Data bypassing reduces the performance penalty of
those memory data RAW dependencies that cannot be eliminated by data forwarding.

Data bypassing is implemented when the first in a pair of instructions writes to memory and the second
instruction reads the same data from memory. The ST6x86 CPU retains the data from the first instruction
and passes it to the second instruction, thereby eliminating a memory read cycle. Data bypassing only
occurs for cacheable memory locations.

Example #1- Data Bypassing with Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a write to
memory and the second instruction reads the same memory location. This dependency is illustrated by
the pair of instructions in the X and Y pipelines as shown below:

X PIPE Y PIPE

(1) ADD [mem], AX (2) SUB BX, [mem]
[mem] ¨[mem] + AX BX ¨ BX - [mem]

The ST6x86 CPU uses data bypassing and stalls the Y pipe for only one clock by eliminating the Y pipe’s
memory read cycle (Table 1.5). Instead of reading memory in the Y pipe, the result of the previous
instruction ([mem] + Reg0) is used to subtract from Reg1, thereby saving a memory access cycle.

Table 1.5. Example of Data Bypassing

Instruction

Physical Register
Contents Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD [mem], AX AX BX X [mem] ← [mem] + Reg0

SUB BX, [mem] AX BX Y Reg2 ← Reg1 - {[mem] + Reg0}
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1.2.5 Branch Control

Branch instructions occur on average every four to
six instructions in x86-compatible programs. When
the normal sequential flow of a program changes
due to a branch instruction, the pipeline stages
may stall while waiting for the CPU to calculate,
retrieve, and decode the new instruction stream.
The ST6x86 CPU minimizes the performance deg-
radation and latency of branch instructions through
the use of branch prediction and speculative exe-
cution.

1.2.5.1 Branch Prediction

The ST6x86 CPU uses a 256-entry, 4-way set
associative Branch Target Buffer (BTB) to store
branch target addresses and branch prediction
information. During the fetch stage, the instruction
stream is checked for the presence of branch
instructions. If an unconditional branch instruction
is encountered, the ST6x86 CPU accesses the
BTB to check for the branch instruction’s target
address. If the branch instruction’s target address
is found in the BTB, the ST6x86 CPU begins fetch-
ing at the target address specified by the BTB.

In case of conditional branches, the BTB also pro-
vides history information to indicate whether the
branch is more likely to be taken or not taken. If
the conditional branch instruction is found in the
BTB, the ST6x86 CPU begins fetching instructions
at the predicted target address. If the conditional
branch misses in the BTB, the ST6x86 CPU pre-
dicts that the branch will not be taken, and instruc-
tion fetching continues with the next sequential
instruction. The decision to fetch the taken or not
taken target address is based on a four-state
branch prediction algorithm.

Once fetched, a conditional branch instruction is
first decoded and then dispatched to the X pipeline
only. The conditional branch instruction proceeds
through the X pipeline and is then resolved in
either the EX stage or the WB stage. The condi-
tional branch is resolved in the EX stage, if the
instruction responsible for setting the condition
codes is completed prior to the execution of the
branch. If the instruction that sets the condition
codes is executed in parallel with the branch, the
conditional branch instruction is resolved in the
WB stage.

Correctly predicted branch instructions execute in
a single core clock. If resolution of a branch indi-
cates that a misprediction has occurred, the
ST6x86 CPU flushes the pipeline and starts fetch-
ing from the correct target address. The ST6x86
CPU prefetches both the predicted and the
non-predicted path for each conditional branch,
thereby eliminating the cache access cycle on a
misprediction. If the branch is resolved in the EX
stage, the resulting misprediction latency is four
cycles. If the branch is resolved in the WB stage,
the latency is five cycles.

Since the target address of return (RET) instruc-
tions is dynamic rather than static, the ST6x86
CPU caches target addresses for RET instructions
in an eight-entry return stack rather than in the
BTB. The return address is pushed on the return
stack during a CALL instruction and popped during
the corresponding RET instruction.
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1.2.5.2 Speculative Execution

The ST6x86 CPU is capable of speculative execu-
tion following a floating point instruction or pre-
dicted branch. Speculative execution allows the
pipelines to continuously execute instructions fol-
lowing a branch without stalling the pipelines wait-
ing for branch resolution. The same mechanism is
used to execute floating point instructions (see
Section 1.5) in parallel with integer instructions.

The ST6x86 CPU is capable of up to four levels of
speculation (i.e., combinations of four conditional
branches and floating point operations). After
generating the fetch address using branch predic-
tion, the CPU checkpoints the machine state (reg-
isters, flags, and processor environment),
increments the speculation level counter, and
begins operating on the predicted instruction
stream.

Once the branch instruction is resolved, the CPU
decreases the speculation level. For a correctly
predicted branch, the status of the checkpointed
resources is cleared. For a branch misprediction,
the ST6x86 processor generates the correct fetch
address and uses the checkpointed values to
restore the machine state in a single clock.

In order to maintain compatibility, writes that result
from speculatively executed instructions are not
permitted to update the cache or external memory
until the appropriate branch is resolved. Specula-
tive execution continues until one of the following
conditions occurs:

1) A branch or floating point operation is decoded
and the speculation level is already at four.

2) An exception or a fault occurs.

3) The write buffers are full.

4) An attempt is made to modify a non-check-
pointed resource (i.e., segment registers, system
flags).

1.3 Cache Units

The ST6x86 CPU employs two caches, the Unified
Cache and the Instruction Line Cache
(Figure 1.2).

1.3.1 Unified Cache

The 16-KByte unified write-back cache functions
as the primary data cache and as the secondary
instruction cache. Configured as a four-way
set-associative cache, the cache stores up to
16 KBytes of code and data in 512 lines. The
cache is dual-ported and allows any two of the fol-
lowing operations to occur in parallel:

- Code fetch
- Data read (X pipe, Y pipeline or FPU)
- Data write (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allocate
new lines on read misses only or on read and write
misses.
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1.3.2 Instruction Line Cache

The fully associative 256-byte instruction line
cache serves as the primary instruction cache.
The instruction line cache is filled from the unified
cache through the data bus. Fetches from the inte-
ger unit that hit in the instruction line cache do not
access the unified cache. If an instruction line
cache miss occurs, the instruction line data from
the unified cache is transferred to the instruction
line cache and the integer unit, simultaneously.

The instruction line cache uses a pseudo-LRU
replacement algorithm. To ensure proper opera-
tion in the case of self-modifying code, any writes
to the unified cache are checked against the con-
tents of the instruction line cache. If a hit occurs in
the instruction line cache, the appropriate line is
invalidated.

Figure 1.2. Cache Unit Operations
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1.4 Memory Management Unit

The Memory Management Unit (MMU), shown in
Figure 1.3, translates the linear address supplied
by the IU into a physical address to be used by the
unified cache and the bus interface. Memory man-
agement procedures are x86 compatible, adhering
to standard paging mechanisms.

The ST6x86 MMU includes two paging mecha-
nisms (Figure 1.3), a traditional paging mecha-
nism, and a ST6x86 variable-size paging
mechanism.

1.4.1 Variable-Size Paging Mechanism

The SGS-THOMSON variable-size paging mecha-
nism allows software to map pages between
4 KBytes and 4 GBytes in size. The large contigu-
ous memories provided by this mechanism help
avoid TLB (Translation Lookaside Buffer) thrashing
associated with some operating systems and
applications. For example, use of a single large
page instead of a series of small 4-KByte pages
can greatly improve performance in an application
using a large video memory buffer.

Figure 1.3. Paging Mechanism within the Memory Management Unit
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1.4.2 Traditional Paging Mechanism

The traditional paging mechanism has been
enhanced on the ST6x86 CPU with the addition of
the Directory Table Entry (DTE) cache and the Vic-
tim TLB. The main TLB (Translation Lookaside
Buffer) is a direct-mapped 128-entry cache for
page table entries.

The four-entry fully associative DTE cache stores
the most recent DTE accesses. If a Page Table
Entry (PTE) miss occurs followed by a DTE hit,
only a single memory access to the PTE table is
required.

The Victim TLB stores PTEs which have been dis-
placed from the main TLB due to a TLB miss. If a
PTE access occurs while the PTE is stored in the
victim TLB, the PTE in the victim TLB is swapped
with a PTE in the main TLB. This has the effect of
selectively increasing TLB associativity. The
ST6x86 CPU updates the eight-entry fully associa-
tive victim TLB on an oldest entry replacement
basis.

1.5 Floating Point Unit

The ST6x86 Floating Point Unit (FPU) interfaces to
the integer unit and the cache unit through a 64-bit
bus. The ST6x86 FPU is x87 instruction set com-
patible and adheres to the IEEE-754 standard.
Since most applications contain FPU instructions
mixed with integer instructions, the ST6x86 FPU
achieves high performance by completing integer
and FPU operations in parallel.

FPU Parallel Execution

The ST6x86 CPU executes integer instructions in
parallel with FPU instructions. Integer instructions
may complete out of order with respect to the FPU
instructions. The ST6x86 CPU maintains x86 com-
patibility by signaling exceptions and issuing write
cycles in program order.

As previously discussed, FPU instructions are
always dispatched to the integer unit’s X pipeline.
The address calculation stage of the X pipeline
checks for memory management exceptions and
accesses memory operands used by the FPU. If
no exceptions are detected, the ST6x86 CPU
checkpoints the state of the CPU and, during AC2,
dispatches the floating point instruction to the FPU
instruction queue. The ST6x86 CPU can then
complete any subsequent integer instructions
speculatively and out of order relative to the FPU
instruction and relative to any potential FPU
exceptions which may occur.

As additional FPU instructions enter the pipeline,
the ST6x86 CPU dispatches up to four FPU
instructions to the FPU instruction queue. The
ST6x86 CPU continues executing speculatively
and out of order, relative to the FPU queue, until
the ST6x86 CPU encounters one of the conditions
that causes speculative execution to halt. As the
FPU completes instructions, the speculation level
decreases and the checkpointed resources are
available for reuse in subsequent operations. The
ST6x86 FPU also uses a set of four write buffers to
prevent stalls due to speculative writes.

1.6 Bus Interface Unit

The Bus Interface Unit (BIU) provides the signals
and timing required by external circuitry. The sig-
nal descriptions and bus interface timing informa-
tion is provided in Chapters 3 and 4 of this manual.
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2.0 Programming Interface

In this chapter, the internal operations of the
ST6x86 CPU are described mainly from an appli-
cation programmer’s point of view. Included in this
chapter are descriptions of processor initialization,
the register set, memory addressing, various types
of interrupts and the shutdown and halt process.

An overview of real, virtual 8086, and protected
operating modes is also included in this chapter.
The FPU operations are described separately at
the end of the chapter. This manual does not -
and is not intended to - describe the ST6X86
microprocessor or its operations at the circuit
level.
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Table 2.1. Initialized Register Controls

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed.

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data 05 + Device ID
Device ID = 31h or 33h (2X clock)
Device ID = 35h or 37h (3X clock)

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

CS Code Segment F000h
Base address set to FFFF 0000h.
Limit set to FFFFh.

SS Stack Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

DS Data Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

GS Extra Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

IDTR
Interrupt Descriptor Table Regis-
ter

Base = 0, Limit = 3FFh

GDTR
Global Descriptor Table
Register

xxxx xxxxh, xxxxh

LDTR
Local Descriptor Table
Register

xxxx xxxxh, xxxxh

TR Task Register xxxxh

CR0 Machine Status Word 6000 0010h

CR2 Control Register 2 xxxx xxxxh

CR3 Control Register 3 xxxx xxxxh

CCR (0-5) Configuration Control (0-5) 00h

ARR (0-7) Address Region Registers (0-7) 00h

RCR (0-7) Region Control Registers (0-7) 00h

DIR0 Device Identification 0
31h or 33h (2X clock)
35h or 37h (3X clock)

DIR1 Device Identification 1 Step ID + Revision ID

DR7 Debug Register 7 0000 0400h

Note: x = Undefined value
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2.1 ST6x86 Configuration Registers

A set of 24 on-chip ST6x86 configuration registers
are used to enable features in the ST6x86 CPU.
These registers assign non-cached memory
areas, set up SMM, provide CPU identification
information and control various features such as
cache write policy, and bus locking control. There
are four groups of registers within the ST6x86 con-
figuration register set:

- 6 Configuration Control Registers (CCRx)
- 8 Address Region Registers (ARRx)
- 8 Region Control Registers (RCRx)
- 2 Device Identification Registers (DIRx)

Access to the configuration registers is achieved
by writing the register index number for the config-
uration register to I/O port 22h. I/O port 23h is
then used for data transfer.

Each I/O port 23h data transfer must be preceded
by a valid I/O port 22h register index selection.
Otherwise, the current 22h, and the second and
later I/O port 23h operations communicate through
the I/O port to produce external I/O cycles. All
reads from I/O port 22h produce external I/O
cycles. Accesses that hit within the on-chip config-
uration registers do not generate external I/O
cycles.

After reset, configuration registers with indexes
CO-CFh and FE-FFh are accessible. To prevent
potential conflicts with other devices which may
use ports 22 and 23h to access their registers, the
remaining registers (indexes D0-FDh) are accessi-
ble only if the MAPEN(3-0) bits in CCR3 are set to
1h. See Figure 2.4 (Page 24) for more information
on the MAPEN(3-0) bit locations.

If MAPEN[3-0] = 1h, any access to indexes in the
range 00-FFh will not create external I/O bus
cycles. Registers with indexes C0-CFh, FE, FFh
are accessible regardless of the state of
MAPEN[3-0]. If the register index number is out-
side the C0-CFh or FE-FFh ranges, and
MAPEN[3-0] are set to 0h, external I/O bus cycles
occur. Table 2.2 (Page 20) lists the MAPEN[3-0]
values required to access each ST6x86 configu-
ration register. All bits in the configuration regis-
ters are initialized to zero following reset unless
specified otherwise.

Valid register index numbers include C0h to E3h,
E8h, E9h, FEh and FFh (if MAPEN[3-0] = 1).

2.1.1 Configuration Control Registers

(CCR0 - CCR5) control several functions, includ-
ing non-cacheable memory, write-back regions,
and SMM features. A list of the configuration reg-
isters is listed in Table 2.2 (Page 20). The configu-
ration registers are described in greater detail in
the following pages.
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Table 2.2. ST6x86 CPU Configuration Registers

REGISTER NAME ACRONYM REGISTER
INDEX

WIDTH
(Bits)

MAPEN VALUE
NEEDED FOR

ACCESS

Configuration Control 0 CCR0 C0h 8 x

Configuration Control 1 CCR1 C1h 8 x

Configuration Control 2 CCR2 C2h 8 x

Configuration Control 3 CCR3 C3h 8 x

Configuration Control 4 CCR4 E8h 8 1

Configuration Control 5 CCR5 E9h 8 1

Address Region 0 ARR0 C4h -C6h 24 x

Address Region 1 ARR1 C7h -C9h 24 x

Address Region 2 ARR2 CAh -CCh 24 x

Address Region 3 ARR3 CDh - CFh 24 x

Address Region 4 ARR4 D0h -D2h 24 1

Address Region 5 ARR5 D3h -D5h 24 1

Address Region 6 ARR6 D6h -D8h 24 1

Address Region 7 ARR7 D9h - DBh 24 1

Region Control 0 RCR0 DCh 8 1

Region Control 1 RCR1 DDh 8 1

Region Control 2 RCR2 DEh 8 1

Region Control 3 RCR3 DFh 8 1

Region Control 4 RCR4 E0h 8 1

Region Control 5 RCR5 E1h 8 1

Region Control 6 RCR6 E2h 8 1

Region Control 7 RCR7 E3h 8 1

Device Identification 0 DIR0 FEh 8 x

Device Identification 1 DIR1 FFh 8 x

Note: x = Don’t Care
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Figure 2.1. ST6x86 Configuration Control Register 0 (CCR0)

Table 2.3. CCR0 Bit Definitions

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

BIT
POSITION NAME DESCRIPTION

1 NC1
No Cache 640 KByte - 1 MByte
If = 1: Address region 640 KByte to 1 MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Note: Bits 0, 2 through 7 are reserved.
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Figure 2.2. ST6x86 Configuration Control Register 1 (CCR1)

Table 2.4. CCR1 Bit Definitions

7 6 5 4 3 2 1 0

SM3 Reserved Reserved NO_LOCK Reserved SMAC USE_SMI Reserved

BIT
POSITION NAME DESCRIPTION

1 USE_SMI
Enable SMM and SMIACT# Pins
If = 1: SMI# and SMIACT# pins are enabled.
If = 0: SMI# pin ignored and SMIACT# pin is driven inactive.

2 SMAC

System Management Memory Access
If = 1: Any access to addresses within the SMM address space, access system manage-
ment memory instead of main memory. SMI# input is ignored. Used when initializing or
testing SMM memory.
If = 0: No effect on access.

4 NO_LOCK

Negate LOCK#
If = 1: All bus cycles are issued with LOCK# pin negated except page table accesses and
interrupt acknowledge cycles. Interrupt acknowledge cycles are executed as locked
cycles even though LOCK# is negated. With NO_LOCK set, previously noncacheable
locked cycles are executed as unlocked cycles and therefore, may be cached. This
results in higher performance. Refer to Region Control Registers for information on elimi-
nating locked CPU bus cycles only in specific address regions.

7 SM3
SMM Address Space Address Region 3
If = 1: Address Region 3 is designated as SMM address space.

Note: Bits 0, 3, 5 and 6 are reserved.



ST6x86

23/53

Figure 2.3. ST6x86 Configuration Control Register 2 (CCR2)

Table 2.5. CCR2 Bit Definitions

7 6 5 4 3 2 1 0

USE_SUSP Reserved Reserved WPR1 SUSP_HLT LOCK_NW Reserved Reserved

BIT
POSITION NAME DESCRIPTION

2 LOCK_NW

Lock NW
If = 1: NW bit in CR0 becomes read only and the CPU ignores any writes to the
NW bit.
If = 0: NW bit in CR0 can be modified.

3 SUSP_HLT
Suspend on Halt
If = 1: Execution of the HLT instruction causes the CPU to enter low power sus-
pend mode.

4 WPR1
Write-Protect Region 1
If = 1: Designates any cacheable accesses in 640 KByte to 1 MByte address
region are write protected.

7 USE_SUSP
Use Suspend Mode (Enable Suspend Pins)
If = 1: SUSP# and SUSPA# pins are enabled.
If = 0: SUSP# pin is ignored and SUSPA# pin floats.

Note: Bits 0,1, 5 and 6 are reserved.
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Figure 2.4. ST6x86 Configuration Control Register 3 (CCR3)

Table 2.6. CCR3 Bit Definitions

7 6 5 4 3 2 1 0

MAPEN Reserved LINBRST NMI_EN SMI_LOCK

BIT
POSITION NAME DESCRIPTION

0 SMI_LOCK

SMI Lock
If = 1: The following SMM configuration bits can only be modified while in an SMI
service routine:
CCR1: USE_SMI, SMAC, SM3
CCR3: NMI_EN
ARR3: Starting address and block size.
Once set, the features locked by SMI_LOCK cannot be unlocked until the

RESET pin is asserted.

1 NMI_EN

NMI Enable
If = 1: NMI interrupt is recognized while servicing an SMI interrupt.
NMI_EN should be set only while in SMM, after the appropriate SMI interrupt ser-
vice routine has been setup.

2 LINBRST
If = 1: Use linear address sequence during burst cycles.
If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address
sequence is compatible with Pentium’s burst address sequence.

4 - 7 MAPEN

MAP Enable
If = 1h: All configuration registers are accessible.
If = 0h: Only configuration registers with indexes C0-CFh, FEh and FFh
are accessible.

Note: Bit 3 is reserved.
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Figure 2.5. ST6x86 Configuration Control Register 4 (CCR4)

Table 2.7. CCR4 Bit Definitions

7 6 5 4 3 2 1 0

CPUID Reserved Reserved DTE_EN Reserved IORT

BIT
POSITION NAME DESCRIPTION

0 - 2 IORT

I/O Recovery Time
Specifies the minimum number of bus clocks between I/O accesses:
0h = 1 clock delay
1h = 2 clock delay
2h = 4 clock delay
3h = 8 clock delay
4h = 16 clock delay
5h = 32 clock delay (default value after RESET)
6h = 64 clock delay
7h = no delay

4 DTE_EN
Enable Directory Table Entry Cache
If = 1: the Directory Table Entry cache is enabled.

7 CPUID

Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution of the
CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bit in the EFLAGS register can not be modified and execution of the
CPUID instruction causes an invalid opcode exception.

Note: Bits 3 and bits 5 and 6 are reserved.
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Figure 2.6. ST6x86 Configuration Control Register 5 (CCR5)

Table 2.8. CCR5 Bit Definitions

7 6 5 4 3 2 1 0

Reserved Reserved ARREN LBR1 Reserved Reserved Reserved WT_ALLOC

BIT
POSITION NAME DESCRIPTION

0 WT_ALLOC
Write-Through Allocate
If = 1: New cache lines are allocated for read and write misses.
If = 0: New cache lines are allocated only for read misses.

4 LBR1
Local Bus Region 1
If = 1: LBA# pin is asserted for all accesses to the 640 KByte to 1 MByte address
region.

5 ARREN

Enable ARR Registers
If = 1: Enables all ARR registers.
If = 0: Disables the ARR registers. If SM3 is set, ARR3 is enabled regardless of
the setting of ARREN.

Note: Bits 1 through 3 and 6 though 7 are reserved.
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2.1.2 Address Region Registers

The Address Region Registers (ARR0 - ARR7)
(Figure 2.7) are used to specify the location and
size for the eight address regions.

Attributes for each address region are specified in
the Region Control Registers (RCR0-RCR7).
ARR7 and RCR7 are used to define system main
memory and differ from ARR0-6 and RCR0-6.

With non-cacheable regions defined on-chip, the
ST6x86 CPU delivers optimum performance by
using advanced techniques to eliminate data
dependencies and resource conflicts in its execu-
tion pipelines. If KEN# is active for accesses to
regions defined as non-cacheable by the RCRs,

the region is not cached. The RCRs take prece-
dence in this case.

A register index, shown in Table 2.9 (Page 28) is
used to select one of three bytes in each ARR.

The starting address of the ARR address region,
selected by the START ADDRESS field, must be
on a block size boundary. For example, a
128 KByte block is allowed to have a starting
address of 0 KBytes, 128 KBytes, 256 KBytes,
and so on.

The SIZE field bit definition is listed in Table 2.10,
on page 28. If the SIZE field is zero, the address

region is of zero size and thus disabled.

Figure 2.7. Address Region Registers (ARR0 - ARR7)

START ADDRESS SIZE

Memory Address
BitsA31-A24

Memory Address
BitsA23-A16

Memory Address
BitsA15-A12

Size Bits
3-0

7 0 7 0 7 4 3 0
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Table 2.9. ARR0 - ARR7 Register Index Assignment

Table 2.10. Bit Definitions for SIZE Field

.

ARR
Register

Memory Address
(A31 - A24)

Memory Address
(A23 - A16)

Memory Address
(A15 - A12)

Address Region
Size (3 - 0)

ARR0 C4h C5h C6h C6h

ARR1 C7h C8h C9h C9h

ARR2 CAh CBh CCh CCh

ARR3 CDh CEh CFh CFh

ARR4 D0h D1h D2h D2h

ARR5 D3h D4h D5h D5h

ARR6 D6h D7h D8h D8h

ARR7 D9h DAh DBh DBh

SIZE (3-0)
BLOCK SIZE

SIZE (3-0)
BLOCK SIZE

ARR0-6 ARR7 ARR0-6 ARR7

0h Disabled Disabled 8h 512 KBytes 32 MBytes

1h 4 KBytes 256 KBytes 9h 1 MBytes 64 MBytes

2h 8 KBytes 512 KBytes Ah 2 MBytes 128 MBytes

3h 16 KBytes 1 MBytes Bh 4 MBytes 256 MBytes

4h 32 KBytes 2 MBytes Ch 8 MBytes 512 MBytes

5h 64 KBytes 4 MBytes Dh 16 MBytes 1 GBytes

6h 128 KBytes 8 MBytes Eh 32 MBytes 2 GBytes

7h 256 KBytes 16 MBytes Fh 4 GBytes 4 GBytes
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2.1.3 Region Control Registers

The Region Control Registers (RCR0 - RCR7)
specify the attributes associated with the ARRx
address regions. The bit definitions for the region
control registers are shown in Figure 2.8 (Page 30)
and in Table 2.11 (Page 30). Cacheability, weak
write ordering, weak locking, write gathering,
cache write through policies and control of the
LBA# pin can be activated or deactivated using the
attribute bits.

If an address is accessed that is not in a memory
region defined by the ARRx registers, the following
conditions will apply:

- LBA# pin is asserted
- If the memory address is cached, write-back is

enabled if WB/WT# is returned high.
- Writes are not gathered
- Strong locking takes place
- Strong write ordering takes place
- The memory access is cached, if KEN# is

returned asserted.

Overlapping Conditions Defined. If two regions
specified by ARRx registers overlap and conflict-
ing attributes are specified, the following attributes
take precedence:

- LBA# pin is asserted
- Write-back is disabled
- Writes are not gathered
- Strong locking takes place
- Strong write ordering takes place
- The overlapping regions are non-cacheable.
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Figure 2.8. Region Control Registers (RCR0-RCR7)

Table 2.11. RCR0-RCR7 Bit Definitions

Region Cache Disable (RCD). Setting RCD to a
one defines the address region as non-cacheable.
Whenever possible, the RCRs should be used to
define non-cacheable regions rather than using
external address decoding and driving the KEN#
pin.

Region Cache Enable (RCE). Setting RCE to a
one defines the address region as cacheable.
RCE is used to define the system main memory as
cacheable memory. It is implied that memory out-
side the region is non-cacheable.

Weak Write Ordering (WWO). Setting WWO=1
enables weak write ordering for that address
region. Enabling WWO allows the ST6x86 CPU to
issue writes in its internal cache in an order differ-
ent than their order in the code stream. External
writes always occur in order (strong ordering).
Therefore, this should only be enabled for memory
regions that are NOT sensitive to this condition.
WWO should not be enabled for memory mapped
I/O. WWO only applies to memory regions that
have been cached and designated as write-back.
It also applies to previously cached addresses
even if the cache has been disabled (CD=1).
Enabling WWO removes the write-ordering restric-
tion and improves performance due to reduced
pipeline stalls.

Weak Locking (WL). Setting WL=1 enables weak
locking for that address region. With WWO
enabled, all bus cycles are issued with the LOCK#
pin negated except for page table accesses and
interrupt acknowledge cycles. Interrupt acknowl-

edge cycles are executed as locked cycles even
though LOCK# is negated. With WL=1, previously
non-cacheable locked cycles are executed as
unlocked cycles and therefore, may be cached,
resulting in higher performance. The NO_LOCK
bit of CCR1 enables weak locking for the entire
address space. The WL bit allows weak locking
only for specific address regions. WL is indepen-
dent of the cacheability of the address region.

Write Gathering (WG). Setting WG=1 enables
write gathering for the associated address region.
Write gathering allows multiple byte, word, or
dword sequential address writes to accumulate in
the on-chip write buffer. (As instructions are exe-
cuted, the results are placed in a series of output
buffers. These buffers are gathered into the finial
output buffer).

When access is made to a non-sequential memory
location or when the 8-byte buffer becomes full,
the contents of the buffer are written on the exter-
nal 64-bit data bus. Performance is enhanced by
avoiding as many as seven memory write cycles.
WG should not be used on memory regions that
are sensitive to write cycle gathering. WG can be
enabled for both cacheable and non-cacheable
regions.

Write Through (WT). Setting WT=1 defines the
address region as write-through instead of
write-back, assuming the region is cacheable.
Regions where system ROM are loaded (shad-
owed or not) should be defined as write through.

7 6 5 4 3 2 1 0

Reserved Reserved NLB WT WG WL WWO RCD / RCE*

*Note: RCD is defined for RCR0-RCR6. RCE is defined for RCR7.

RCRx BIT
POSITION NAME DESCRIPTION

0 - 6 0 RCD If = 1: Disables caching for address region specified by ARRx.

7 0 RCE If = 1: Enables caching for address region ARR7.

0 - 7 1 WWO If = 1: Weak write ordering for address region specified by ARRx.

0 - 7 2 WL If = 1: Weak locking for address region specified by ARRx.

0 - 7 3 WG If = 1: Write gathering for address region specified by ARRx.

0 - 7 4 WT If = 1: Address region specified by ARRx is write-through.

0 - 7 5 NLB If = 1:LBA# pin is not asserted for access to address region specified by ARRx

Note: Bits 6 and 7 are reserved.
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LBA # Not Asserted (NLB). Setting NLB = 1 prevents the microprocessor from asserting the Local Bus
Access (LBA#) output pin for accesses to that address region. The RCR regions may be used to define
non-local bus address regions. The LBA# pin could then be asserted for all regions, except those
defined by the RCRs. The LBA# signal may be used by the external hardware (e.g., chipsets) as an indi-
cation that local bus accesses are occurring.
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3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Connections

This section provides information on electrical con-
nections, absolute maximum ratings, recom-
mended operating conditions, DC characteristics,
and AC characteristics. All voltage values in Elec-
trical Specifications are measured with respect to
VSS unless otherwise noted.

3.1.1 Power and Ground Connections and
Decoupling

Testing and operating the ST6x86 CPU requires
the use of standard high frequency techniques to
reduce parasitic effects. The high clock frequen-
cies used in the ST6x86 CPU and its output buffer
circuits can cause transient power surges when
several output buffers switch output levels simulta-
neously. These effects can be minimized by filter-
ing the DC power leads with low-inductance
decoupling capacitors, using low impedance wir-
ing, and by utilizing all of the VCC and GND pins.
The ST6x86 CPU contains 296 pins with 53 pins
connected to VCC and 53 connected to VSS
(ground).

3.1.2 Pull-Up/Pull-Down Resistors

Table 3.1 lists the input pins that are internally con-
nected to pull-up and pull-down resistors. The
pull-up resistors are connected to VCC and the
pull-down resistors are connected to VSS. When
unused, these inputs do not require connection to
external pull-up or pull-down resistors. The
SUSP# pin is unique in that it is connected to a
pull-up resistor only when SUSP# is not asserted.

Table 3.1. Pins Connected to Internal Pull-Up
and Pull Down Resistors

SIGNAL PIN NO. RESISTOR

BRDYC# Y3 20-kΩ pull-up

CLKMUL Y33 20-kΩ pull-down

QDUMP# AL7
20-kΩ pull-up

SMI# AB34

SUSP# Y34 20-kΩ pull-up (see text)

TCK M34

20-kΩ pull-up

TDI N35

TMS P34

TRST# Q33

Reserved J33

Reserved W35

Reserved Y35

Reserved AN35 20-kΩ pull-down
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3.1.3 Unused Input Pins

All inputs not used by the system designer and not
listed in Table 3.1 should be connected either to
ground or to VCC. Connect active-high inputs to
ground through a 20 kΩ (± 10%) pull-down resistor
and active-low inputs to VCC through a 20 kΩ (±
10%) pull-up resistor to prevent possible spurious
operation.

3.1.4 NC and Reserved Pins

Pins designated NC have no internal connec-
tions. Pins designated RESV or RESERVED
should be left disconnected. Connecting a
reserved pin to a pull-up resistor, pull-down resis-
tor, or an active signal could cause unexpected
results and possible circuit malfunctions.

3.2 Absolute Maximum Ratings

The following table lists absolute maximum ratings
for the ST6x86 CPU microprocessors. Stresses
beyond those listed under Table 3.2 limits may
cause permanent damage to the device. These
are stress ratings only and do not imply that opera-
tion under any conditions other than those listed
under “Recommended Operating Conditions”
ST6x86 is possible. Exposure to conditions
beyond Table 3.2 may (1) reduce device reliability
and (2) result in premature failure even when there
is no immediately apparent sign of failure. Pro-
longed exposure to conditions at or near the abso-
lute maximum ratings may also result in reduced
useful life and reliability.

Table 3.2. Absolute Maximum Ratings

PARAMETER MIN MAX UNITS NOTES

Operating Case Temperature
Storage Temperature
Supply Voltage, VCC
Voltage On Any Pin
Input Clamp Current, IIK
Output Clamp Current, IOK

-65
-65
-0.5
-0.5

110
150
4.0

VCC +0.5
10
25

°C
°C
V
V

mA
mA

Power Applied

Power Applied
Power Applied

Absolute Maximum Ratings
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3.3 Recommended Operating Conditions

Table 3.3 presents the recommended operating conditions for the ST6x86 CPU device.

Table 3.3. Recommended Operating Conditions

PARAMETER MIN MAX UNITS NOTES

TC Operating Case Temperature 0 70 °C Power Applied

VCC Supply Voltage 3.15 3.7 V

VIH High-Level Input Voltage 2.0 5.5 V

VIL Low-Level Input Voltage -0.3 0.8 V

IOH High-Level Output Current
All outputs except A20-A3 and W/R#
A20-A3 and W/R#

-1.0
-2.0

mA VO=VOH(MIN)

IOL Low-Level Output Current
All outputs except A20-A3 and W/R#
A20-A3 and W/R#

5.0
10.0

mA VO=VOL(MAX}

Recommended Operating Conditions
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3.4 DC Characteristics

Table 3.4. DC Characteristics (at Recommended Operating Conditions)

PARAMETER MIN TYP MAX UNITS NOTES

VOL Output Low Voltage
IOL = 5 mA 0.4 V

VOH Output High Voltage
IOH = -1 mA 2.4 V

II Input Leakage Current
For all pins except those
listed in Table 4-1.

±15 µA 0 < VIN < VCC

IIH Input Leakage Current
For all pins with internal
pull-downs.

200 µA
VIH = 2.4 V
See Table 3-1.

IIL Input Leakage Current
For all pins with internal pull-ups.

-400 µA VIL = 0.45 V
See Table 3-1.

ICC Active ICC
80 MHz

100 MHz
110 MHz
120 MHz
133 MHz

3.9
4.5
4.8
5.1
5.5

4.7
5.4
5.8
6.1
6.6

A Note 1, 5

ICCSM Suspend Mode ICC

80MHz
100 MHz
110 MHz
120 MHz
133 MHz

43
48
50
51
54

75
80
83

105
115

mA
Note 1, 3, 5

ICCSS Standby ICC
0 MHz (Suspended/CLK Stopped) 35 75 mA Note 4,5

CINInput Capacitance 15 pF f = 1 MHz, Note 2

COUTOutput Capacitance 20 pF f = 1 MHz, Note 2

CIOI/O Capacitance 25 pF f = 1 MHz, Note 2

CCLKCLK Capacitance 15 pF f = 1 MHz, Note 2

Notes:
1. Frequency (MHz) ratings refer to the internal clock frequency.
2. Not 100% tested.
3. All inputs at 0.4 or VCC - 0.4 (CMOS levels). All inputs held static except clock and all outputs unloaded

(static IOUT = 0 mA).

4. All inputs at 0.4 or VCC - 0.4 (CMOS levels). All inputs held static and all outputs unloaded (static IOUT = 0 mA).
5. Typical, measured at VCC = 3.3 V

DC Characteristics
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3.5 AC Characteristics

Table 3.6 through 3.11 (Pages 38 through 43) list
the AC characteristics including output delays,
input setup requirements, input hold requirements
and output float delays. These measurements are
based on the measurement points identified in Fig-
ure 3.1 (Page 37) and Figure 3.2 (Page 38). The ris-
ing clock edge reference level VREF, and other
reference levels are shown in Table 3.5. Input or
output signals must cross these levels during testing.

Figure 3.1 shows output delay (A and B) and input
setup and hold times (C and D). Input setup and
hold times (C and D) are specified minimums,
defining the smallest acceptable sampling window
a synchronous input signal must be stable for cor-
rect operation.

AC Characteristics
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Figure 3.1. Drive Level and Measurement Points for Switching Characteristics

Table 3.5. Drive Level and Measurement Points for Switching Characteristics

SYMBOL VOLTAGE
(Volts)

VREF 1.5

VIHD 2.3

VILD 0

Note: Refer to Figure 3-1.

AC Characteristics
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AC Characteristics

Table 3.6. Clock Specifications
Tcase = 0°C to 70 °C, See Figure 3.2

Figure 3.2. CLK Timing and Measurement Points

SYMBOL PARAMETER

40-MHz
BUS

50-MHz
BUS

55-MHz
BUS

60-MHz
BUS

66-MHz
BUS

UNITS

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

CLK Frequency 40 50 55 60 66.6 MHz

T1 CLK Period 25 20 18 16.67 33.33 15.0 30.0 ns

T2 CLK Period Stability ± 250 ± 250 ± 250 ± 250 ± 250 ps

T3 CLK High Time 9 7 4.0 4.0 4.0 ns

T4 CLK Low Time 9 7 4.0 4.0 4.0 ns

T5 CLK Fall Time 0.15 2 0.15 2 0.15 1.5 0.15 1.5 0.15 1.5 ns

T6 CLK Rise Time 0.15 2 0.15 2 0.15 1.5 0.15 1.5 0.15 1.5 ns
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Table 3.7. Output Valid Delays
CL=50 pF, Tcase = 0°C to 70°C, See Figure 3.3

Figure 3.3. Output Valid Delay Timing

SYMBOL PARAMETER

40-MHz
BUS

50-MHz
BUS

55-MHz
BUS

60-MHz
BUS

66-MHz
BUS

UNITS

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

T 7

A31-A3,
BE7#-BEO#
CACHE#, D/C#,
LBA#, LOCK#, PCD,
PWT, SCYC,
SMIACT#, W/R#

3 14 1 12 1 7 1 8 1 7 ns

T 7b ADS#, M/IO# 3 14 1 12 1 7.5 1 7.5 1 6 ns

T8 ADSC# 3 14 1 12 1 7 1 8 1 7 ns

T9 AP 3 14 1 12 1 8.5 1 8.5 1 8.5 ns

T10
APCHK#, PCHK#,
FERR#

3 16 1 14 1 8.3 1 7 1 7 ns

T11
D63-DO, DP7-DPO
(Write)

3 14 1.3 12 1.3 9 1.3 9 1.3 7.5 ns

T12a HIT# 3 14 1 12 1 8 1 8 1 8 ns

T12b HITM# 3 14 1.1 12 1.1 7 1.1 7 1.1 6 ns

T13 BREQ, HLDA 3 14 1 12 1 8 1 8 1 8 ns

T14 SUSPA# 3 16 1 14 1 8 1 8 1 8 ns
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Table 3.8. Output Float Delays
CL=50 pFcase = 0°C to 70°C, See Figure 3.4

Figure 3.4. Output Float Delay Timing

SYMBOL PARAMETER

40-MHz
BUS

50-MHz
BUS

55-MHz
BUS

60-MHz
BUS

66-MHz
BUS

UNITS

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

T15

A31-A3, ADS#,
BE7#-BE0#, BREQ,
CACHE#, D/C#,
LBA#, LOCK#,
M/IO#, PCD, PWT,
SCYC, SMIACT#,
W/R#

19 16 10 10 10 ns

T16 AP 19 16 10 10 10 ns

T17
D63-D0,
DP7-DP0 (Write)

19 16 10 10 10 ns
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Table 3.9. Input Setup Times
Tcase = 0 °C to 70 °C, See Figure 3.5

Table 3.10. Input Hold Times
Tcase = 0 °Cto 70 °C, See Figure 3.5

SYMBOL PARAMETER 40-MHz
BUS MIN

50-MHz
BUS MIN

55-MHz
BUS MIN

60-MHz
BUS MIN

66-MHz
BUS MIN UNITS

T18 A20M#, FLUSH#,
IGNNE#, SUSP#

5 5 5 5 5 ns

T19
AHOLD, BHOLD,
BOFF#, DHOLD,
HOLD

5 5 5 5 5 ns

T20 BRDY# 5 5 5 5 5 ns

T21 BRDYC# 5 5 5 5 5 ns

T22
A31-A3, AP,
BE7#-BE0#, 5 5 5 5 5 ns

T22a
D63-D0 (Read),
DP7-DP0 (Read)

3.8 3.8 3.8 3 3 ns

T23 EADS#, INV 5 5 5 5 5 ns

T24
INTR, NMI,
RESET, SMI#,
WM_RST

5 5 5 5 5 ns

T25
EWBE#, KEN#,
NA#, WB/WT#

5 5 4.5 4.5 4.5 ns

T26 QDUMP# 5 5 5 5 5 ns

SYMBOL PARAMETER 40-MHz
BUS MIN

50-MHz
BUS MIN

55-MHz
BUS MIN

60-MHz
BUS MIN

66-MHz
BUS MIN UNITS

T27
A20M#, FLUSH#,
IGNNE#, SUSP#

3 2 1 1 1 ns

T28
AHOLD, BHOLD,
BOFF#, DHOLD,
HOLD

3 2 1 1 1 ns

T29 BRDY# 3 2 1 1 1 ns

T30 BRDYC# 3 2 1 1 1 ns

T31a
A31-A3, AP,
BE7#-BE0#

3 2 1 1 1 ns

T31b
D63-D0, DP7-DP0
(Read)

3 2 2 2 2 ns

T32 EADS#, INV 3 2 1 1 1 ns

T33
INTR, NMI,
RESET, SMI#,
WM_RST

3 2 1 1 1 ns

T34
EWBE#, KEN#,
NA#, WB/WT#

3 2 1 1 1 ns

T35 QDUMP# 3 2 1 1 1 ns
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Figure 3.5. Input Setup and Hold Timing
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Table 3.11. JTAG AC Specifications

Figure 3.6. TCK Timing and Measurement Points

SYMBOL PARAMETER
ALL BUS FREQUENCIES

UNITS FIGURE
MIN MAX

TCK Frequency (MHz) 20 ns

T36 TCK Period 50 ns 3-6

T37 TCK High Time 25 ns 3-6

T38 TCK Low Time 25 ns 3-6

T39 TCK Rise Time 5 ns 3-6

T40 TCK Fall Time 5 ns 3-6

T41 TDO Valid Delay 3 20 ns 3-7

T42 Non-test Outputs Valid Delay 3 20 ns 3-7

T43 TDO Float Delay 25 ns 3-7

T44 Non-test Outputs Float Delay 25 ns 3-7

T45 TRST# Pulse Width 40 ns 3-8

T46 TDI, TMS Setup Time 20 ns 3-7

T47 Non-test Inputs Setup Time 20 ns 3-7

T48 TDI, TMS Hold Time 13 ns 3-7

T49 Non-test Inputs Hold Time 13 ns 3-7
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Figure 3.7. JTAG Test Timings

Figure 3.8. Test Reset Timing
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4.0 MECHANICAL SPECIFICATIONS

4.1 296-Pin CPGA Package

The pin assignments for the ST6x86 CPUin a 296-pin CPGA package are shown in Figure 4.1. The pins
are listed by signal name in Table 4.1 (Page 46) and by pin number in Table 4.2 (Page 47). Dimensions
are shown in Table 4.2 (Page 47) and Table 4.3 (Page 49).

Figure 4.1. 296-Pin CPGA Package Pin Assignments
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Table 4.1. 296-Pin CPGA Package Signal Names Sorted by Pin Number

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

A3 NC C29 D21 J35 D2 U35 Vss AE35 NC AL21 A20

A5 D41 C31 D17 J37 Vcc U37 Vcc AE37 Vcc AL23 A18

A7 Vcc C33 D14 K2 Vss V2 Vss AF2 Vss AL25 A16

A9 Vcc C35 D10 K4 D59 V4 AHOLD AF4 PCHK# AL27 A14

A11 Vcc C37 D9 K34 D0 V34 SUSP# AF34 A21 AL29 A12

A13 Vcc D2 D50 K36 Vss V36 Vss AF36 Vss AL31 A11

A15 Vcc D4 D48 L1 Vcc W1 Vcc AG1 Vcc AL33 A7

A17 Vcc D6 D44 L3 D61 W3 EWBE# AG3 SMIACT# AL35 A3

A19 Vcc D8 D40 L5 D60 W5 KEN# AG5 PCD AL37 Vss

A21 Vcc D10 D39 L33 Vcc W33 SUSPA# AG33 A27 AM2 ADSC#

A23 Vcc D12 D37 L35 NC W35 Reserved AG35 A24 AM4 EADS#

A25 Vcc D14 D35 L37 Vcc W37 Vcc AG37 Vcc AM6 W/R#

A27 Vcc D16 D33 M2 Vss X2 Vss AH2 Vss AM8 Vss

A29 Vcc D18 DP3 M4 D62 X4 BRDY# AH4 LOCK# AM10 Vss

A31 D22 D20 D30 M34 TCK X34 Reserved AH34 A26 AM12 Vss

A33 D18 D22 D28 M36 Vss X36 Vss AH36 A22 AM14 Vss

A35 D15 D24 D26 N1 Vcc Y1 Vcc AJ1 BREQ AM16 Vss

A37 NC D26 D23 N3 D63 Y3 BRDYC# AJ3 HLDA AM18 Vss

B2 NC D28 D19 N5 DP7 Y5 NA# AJ5 ADS# AM20 Vss

B4 D43 D30 DP1 N33 TDO Y33 CLKMUL AJ33 A31 AM22 Vss

B6 Vss D32 D12 N35 TDI Y35 Reserved AJ35 A25 AM24 Vss

B8 Vss D34 D8 N37 Vcc Y37 Vcc AJ37 Vss AM26 Vss

B10 Vss D36 DP0 P2 Vss Z2 Vss AK2 AP AM28 Vss

B12 Vss E1 D54 P4 NC Z4 BOFF# AK4 D/C# AM30 Vss

B14 Vss E3 D52 P34 TMS Z34 NC AK6 HIT# AM32 A8

B16 Vss E5 D49 P36 Vss Z36 Vss AK8 A20M# AM34 A4

B18 Vss E7 D46 Q1 Vcc AA1 Vcc AK10 BE1# AM36 A30

B20 Vss E9 D42 Q3 Reserved AA3 Reserved AK12 BE3# AN1 NC

B22 Vss E33 D7 Q5 FERR# AA5 WB/WT# AK14 BE5# AN3 NC

B24 Vss E35 D6 Q33 TRST# AA33 WM_RST AK16 BE7# AN5 NC

B26 Vss E37 Vcc Q35 NC AA35 IGNNE# AK18 CLK AN7 FLUSH#

B28 Vss F2 DP6 Q37 Vcc AA37 Vcc AK20 RESET AN9 Vcc

B30 D20 F4 D51 R2 Vss AB2 Vss AK22 A19 AN11 Vcc

B32 D16 F6 DP5 R4 Reserved AB4 HOLD AK24 A17 AN13 Vcc

B34 D13 F34 D5 R34 BHOLD AB34 SMI# AK26 A15 AN15 Vcc

B36 D11 F36 D4 R36 Vss AB36 Vss AK28 A13 AN17 Vcc

C1 NC G1 Vcc S1 Vcc AC1 Vcc AK30 A9 AN19 Vcc

C3 D47 G3 D55 S3 Reserved AC3 Reserved AK32 A5 AN21 Vcc

C5 D45 G5 D53 S5 LBA# AC5 NC AK34 A29 AN23 Vcc

C7 DP4 G33 D3 S33 Reserved AC33 NMI AK36 A28 AN25 Vcc

C9 D38 G35 D1 S35 DHOLD AC35 NC AL1 NC AN27 Vcc

C11 D36 G37 Vcc S37 Vcc AC37 Vcc AL3 PWT AN29 Vcc

C13 D34 H2 Vss T2 Vss AD2 Vss AL5 HITM# AN31 A10

C15 D32 H4 D56 T4 MI/O# AD4 NC AL7 QDUMP# AN33 A6

C17 D31 H34 NC T34 Vcc AD34 INTR AL9 BE0# AN35 Reserved

C19 D29 H36 Vss T36 Vss AD36 Vss AL11 BE2# AN37 Vss

C21 D27 J1 Vcc U1 Vcc AE1 Vcc AL13 BE4#

C23 D25 J3 D57 U3 CACHE# AE3 NC AL15 BE6#

C25 DP2 J5 D58 U5 INV AE5 APCHK# AL17 SCYC

C27 D24 J33
Reserve
d

U33 Vcc AE33 A23 AL19 Reserved

Note: Reserved pins are reserved for future use by SGS-THOMSON only. Pins marked NC are not internally connected.
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Table 4.2. 296-Pin CPGA Package Pin Numbers Sorted by Signal Name

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A3 AL35 CLKMUL Y33 D48 D4 NC AN3 Vcc AA37 Vss AM12

A4 AM34 D/C# AK4 D49 E5 NC AN5 Vcc AC1 Vss AM14

A5 AK32 D0 K34 D50 D2 NC B2 Vcc AC37 Vss AM16

A6 AN33 D1 G35 D51 F4 NC C1 Vcc AE1 Vss AM18

A7 AL33 D2 J35 D52 E3 NC H34 Vcc AE37 Vss AM20

A8 AM32 D3 G33 D53 G5 NC L35 Vcc AG1 Vss AM22

A9 AK30 D4 F36 D54 E1 NC P4 Vcc AG37 Vss AM24

A10 AN31 D5 F34 D55 G3 NC Q35 Vcc AN11 Vss AM26

A11 AL31 D6 E35 D56 H4 NC Z34 Vcc AN13 Vss AM28

A12 AL29 D7 E33 D57 J3 NMI AC33 Vcc AN15 Vss AM30

A13 AK28 D8 D34 D58 J5 PCD AG5 Vcc AN17 Vss AM8

A14 AL27 D9 C37 D59 K4 PCHK# AF4 Vcc AN19 Vss AN37

A15 AK26 D10 C35 D60 L5 PWT AL3 Vcc AN21 Vss B6

A16 AL25 D11 B36 D61 L3 QDUMP# AL7 Vcc AN23 Vss B8

A17 AK24 D12 D32 D62 M4 RESET AK20 Vcc AN25 Vss B10

A18 AL23 D13 B34 D63 N3 SCYC AL17 Vcc AN27 Vss B12

A19 AK22 D14 C33 DHOLD S35 Reserved AA3 Vcc AN29 Vss B14

A20 AL21 D15 A35 DP0 D36 Reserved AC3 Vcc AN9 Vss B16

A20M# AK8 D16 B32 DP1 D30 Reserved AL19 Vcc E37 Vss B18

A21 AF34 D17 C31 DP2 C25 Reserved AN35 Vcc G1 Vss B20

A22 AH36 D18 A33 DP3 D18 Reserved J33 Vcc G37 Vss B22

A23 AE33 D19 D28 DP4 C7 Reserved Q3 Vcc J1 Vss B24

A24 AG35 D20 B30 DP5 F6 Reserved R4 Vcc J37 Vss B26

A25 AJ35 D21 C29 DP6 F2 Reserved S3 Vcc L1 Vss B28

A26 AH34 D22 A31 DP7 N5 Reserved S33 Vcc L33 Vss H2

A27 AG33 D23 D26 EADS# AM4 Reserved W35 Vcc L37 Vss H36

A28 AK36 D24 C27 EWBE# W3 Reserved X34 Vcc N1 Vss K2

A29 AK34 D25 C23 FERR# Q5 Reserved Y35 Vcc N37 Vss K36

A30 AM36 D26 D24 FLUSH# AN7 SMI# AB34 Vcc Q1 Vss M2

A31 AJ33 D27 C21 HIT# AK6 SMIACT# AG3 Vcc Q37 Vss M36

ADS# AJ5 D28 D22 HITM# AL5 SUSP# V34 Vcc S1 Vss P2

ADSC# AM2 D29 C19 HLDA AJ3 SUSPA# W33 Vcc S37 Vss P36

AHOLD V4 D30 D20 HOLD AB4 TCK M34 Vcc T34 Vss R2

AP AK2 D31 C17 IGNNE# AA35 TDI N35 Vcc U1 Vss R36

APCHK# AE5 D32 C15 INTR AD34 TDO N33 Vcc U33 Vss T2

BE0# AL9 D33 D16 INV U5 TMS P34 Vcc U37 Vss T36

BE1# AK10 D34 C13 KEN# W5 TRST# Q33 Vcc W1 Vss U35

BE2# AL11 D35 D14 LBA# S5 Vcc A7 Vcc W37 Vss V2

BE3# AK12 D36 C11 LOCK# AH4 Vcc A9 Vcc Y1 Vss V36

BE4# AL13 D37 D12 MI/O# T4 Vcc A11 Vcc Y37 Vss X2

BE5# AK14 D38 C9 NA# Y5 Vcc A13 Vss AB2 Vss X36

BE6# AL15 D39 D10 NC A3 Vcc A15 Vss AB36 Vss Z2

BE7# AK16 D40 D8 NC A37 Vcc A17 Vss AD2 Vss Z36

BHOLD R34 D41 A5 NC AC35 Vcc A19 Vss AD36 WB/WT# AA5

BOFF# Z4 D42 E9 NC AC5 Vcc A21 Vss AF2 W/R# AM6

BRDY# X4 D43 B4 NC AD4 Vcc A23 Vss AF36 WM_RST AA33

BRDYC# Y3 D44 D6 NC AE3 Vcc A25 Vss AH2

BREQ AJ1 D45 C5 NC AE35 Vcc A27 Vss AJ37

CACHE# U3 D46 E7 NC AL1 Vcc A29 Vss AL37

CLK AK18 D47 C3 NC AN1 Vcc AA1 Vss AM10

Note: Reserved pins are reserved for future use by SGS-THOMSON only. Pins marked NC are not internally connected.
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Figure 4.2. 296-Pin CPGA Package
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Table 4.3. 296-Pin CPGA Package Dimensions

SYMBOL
MILLIMETERS INCHES

MIN MAX MIN MAX

A 3.91 4.70 0.154 0.185

A1 0.33 0.43 0.013 0.017

A2 2.51 3.07 0.099 0.121

B 0.43 0.51 0.017 0.020

D 49.28 49.91 1.940 1.965

D1 45.47 45.97 1.790 1.810

D2 31.50 Sq. 32.00 Sq. 1.240 Sq. 1.260 Sq.

D3 33.99 34.59 1.338 1.362

D4 8.00 9.91 0.315 0.390

E1 2.41 2.67 0.095 0.105

E2 1.14 1.40 0.045 0.055

F - 0.127 Diag. - 0.005 Diag.

L 3.05 3.30 0.120 0.130

N 296 (Pin Count)

S1 1.65 2.16 0.065 0.085
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4.2 Thermal Characteristics

The ST6x86 processor is designed to operate when the case temperature at the top center of the pack-
age is between 0°C and 70°C. The maximum die (junction) temperature, TJ MAX, and the maximum
ambient temperature, TA MAX, can be calculated by substituting thermal resistance and maximum values
for case or junction temperature and power dissipation in the following equations:

TJ = TC + (P * θJC)
TA = TJ - (P * θJA)

where:

TA = Ambient temperature (°C)
TJ = Average junction temperature (°C)
TC = Case temperature at top center of package (°C)
P = Power dissipation (W)
θJC = Junction-to-case thermal resistance (°C/W)
θJA = Junction-to-ambient thermal resistance (°C/W).

Table 4.4 lists the junction-to-case and case-to-ambient thermal resistances for the SPGA package.
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Table 4.4. Thermal Resistances for CPGA Package With and Without Heatsinks

Thermal Resistance θJC °C/W θCA °C/W

Laminar Air Flow (ft/min) 0 0 100 200 400 600 800

1.95 x1.95 x 0.25 Heatsink 0.9 8.4 7.4 6.0 4.0 3.1 2.6

1.95 x1.95 x 0.40 Heatsink 0.9 7.7 6.6 4.9 3.2 2.7 2.1

1.95 x1.95 x 0.65 Heatsink 0.9 5.9 4.7 3.2 2.1 1.7 1.4

Without Heatsink 1.4 14.7 11.5 9.1 7.3 7.0 6.2

Notes:
For a ST6x86 processor with 1.25 x 1.25 x 0.40 inch CuW heat spreader.
Heatsinks are omni-directional pin aluminum alloy.
Features are based on standard extrusion practices for a given height.
Heatsink attachment was made with 0.006 inch of thermal grease applied between heatsink and case.
Maximum air temperature is assumed to be 40 °C



ST6x86

52/53

Ordering Information

H S

(3.52 V Commercial
Speed Equalizer Package Type

H = CPGA Package
B = BGA Package
P = PPGA Package

S= Supply Voltage

P120+6X86

Please contact your nearest SGS-THOMSON sales office to confirm availability of specific valid
combinations and to check on newly released combinations.

Example: ST

SGS Thomson
Prefix

Device
Name

Grade Temperature)P120+=100MHz(internal)
P133+=110MHz(internal)
P150+=120Mhz(internal)
P166+=133MHz(internal)
P200+=150MHz(internal)

P90+= 80MHz(internal)
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The ST6x86 CPU part numbers are listed below.

ST6x86 Part Numbers

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibili ty for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications men-
tioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without
express writ ten approval of SGS-THOMSON Microelectronics.

 SGS-THOMSON Microelectronics. All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia – Brazil – France – Germany – Hong Kong – Italy – Korea – Malaysia – Malta – Morocco – The Netherlands – Singapore – Spain

– Sweden – Taiwan – United Kingdom – U.S.A.

PART NUMBER NOM
Vcc (V)

FREQUENCY
(MHz)

BUS INTERNAL

ST6X86P90+HS 3.52 40 80

ST6X86P120+HS 3.52 50 100

ST6X86P133+HS 3.52 55 110

ST6X86P150+HS 3.52 60 120

ST6X86P166+HS 3.52 66 133


