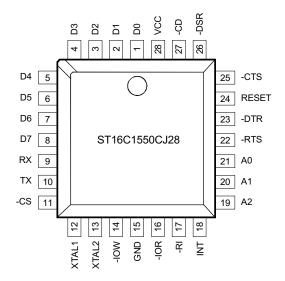


ST16C1550/51 UART WITH 16-BYTE FIFO'S

DESCRIPTION


The ST16C1550, ST16C1551 series (here on denoted as the 155X) is a universal asynchronous receiver and transmitter (UART). The 155X is an improved version of the SSI 73M1550 and SSI 73M2550 UART with higher operating speed and lower access time. The 155X provides enhanced UART functions with 16 byte FIFOs, a modem control interface, independent programmable baud rate generators with clock rates to 1.5 Mbps. Onboard status registers provide the user with error indications and operational status. System interrupts and modem control features may be tailored by external software to meet specific user requirements. An internal loopback capability allows onboard diagnostics. The 155X is available in a 28-pin PLCC/plastic-DIP, 48-pin TQFP packages.. The Baud rate generator can be configured for either crystal or external clock input with the exception of the 28 pin 1551 package. An external clock must be provided for the 28 pin 1551 package. Each package type, with the exception of the 28 pin 1550, provides a buffered reset output that can be controlled through user software. DMA monitor signals TXRDY/RXRDY are not available at the 155X I/O pins but these signals are accessible through ISR register bits 4-5. Except as listed above, each package version has the same features. The 155X is fabricated in an advanced CMOS process to achieve low drain power and high speed requirements.

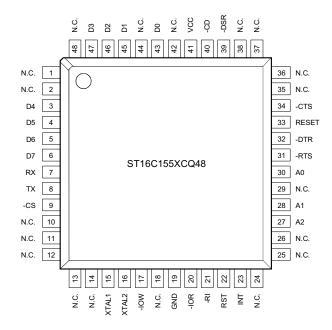
FEATURES

- Pin and functionally compatible to SSI 73M1550/ 2550/Software compatible INS8250, NS16C550
- 1.5 Mbps transmit/receive operation (24Mhz Max.) with programmable clock control
- •16 byte transmit FIFO.
- 16 byte receive FIFO with error flags.
- Four independently selectable Transmit and Receive FIFO interrupt trigger levels
- Modem control signals (-CTS, -RTS, -DSR, -DTR, -RI, -CD).
- Programmable character lengths (5, 6, 7, 8) with Even, odd, or no parity
- Crystal or external clock input (except 28 pin ST16C1551)
- Provides enhanced 16C550 features for power down and software controllable reset output
- 460.8 Kbps transmit/receive operation with 7.3728 MHz crystal or external clock source

ORDERING INFORMATION

PLCC Package

Part number	Pin	Package	Operating temperature	Partnumber	Pin	Package	Operating temperature
ST16C1550CP28	28	PDIP	0° C to + 70° C	ST16C1550IP28	28	PDIP	-40° C to + 85° C
ST16C1550CJ28	28	PLCC	0° C to + 70° C	ST16C1550IJ28	28	PLCC	-40° C to + 85° C
ST16C1550CQ48	48	TQFP	0° C to + 70° C	ST16C1550IQ48	48	TQFP	-40° C to + 85° C
ST16C1551CP28	28	PDip	0° C to + 70° C	ST16C1551IP28	28	PDip	-40° C to + 85° C
ST16C1551CJ28	28	PLCC	0° C to + 70° C	ST16C1551IJ28	28	PLĊC	-40° C to + 85° C
ST16C1551CQ48	48	TQFP	0° C to + 70° C	ST16C1550IQ48	48	TQFP	-40° C to + 85° C
Rev. 3.10							


Π

EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 • (510) 668-7000 • FAX (510) 668-7017

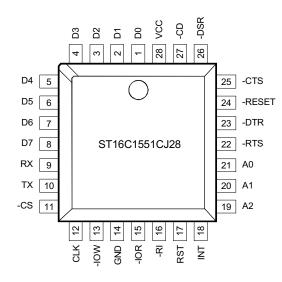
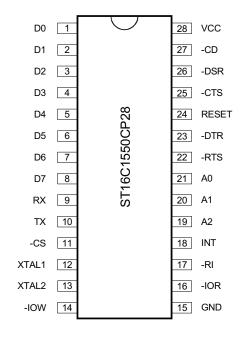
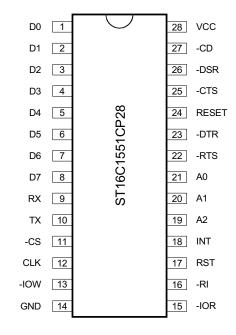


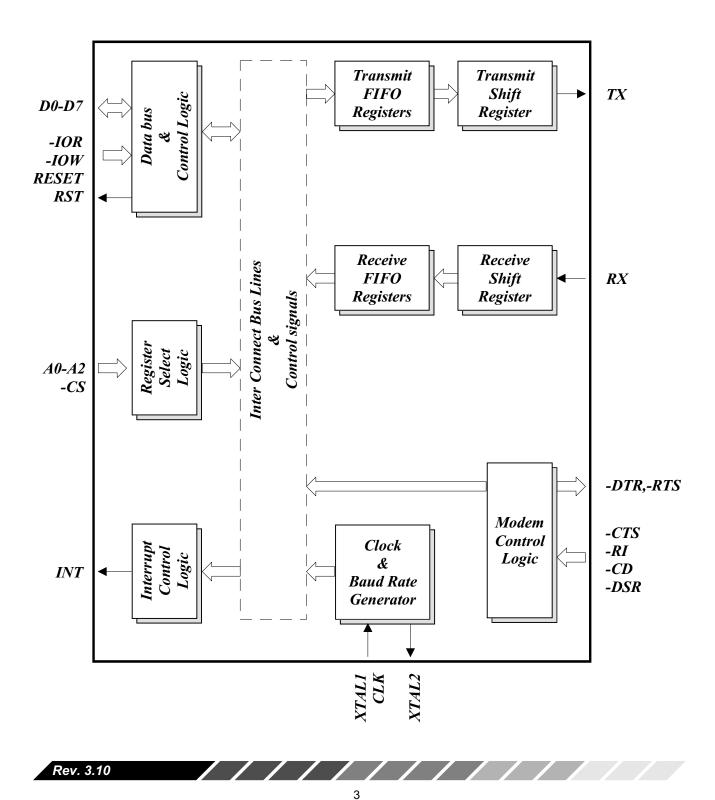
Figure 1, Package Descriptions, 28 pin, 48 pin ST16C1550/51


48 Pin TQFP Package



28 Pin PLCC Package

28 Pin Package DIP



Rev. 3.10

Figure 2, Block Diagram

SYMBOL DESCRIPTION

Symbol	28	Pin 28	48	Signal type	Pin Description
A0	21	21	30	I	Address-0 Select Bit Internal register address selection.
A1	20	20	28	I	Address-1 Select Bit Internal register address selection.
A2	19	19	27	I	Address-2 Select Bit Internal register address selection.
CLK	-	12	-	I	Clock Input This function is associated with 28 pin ST16C1551CJ28 package only. An external clock must be connected to this pin to clock the baud rate generator and internal circuitry (see Programmable Baud Rate Generator).
-CS	11	11	9	I	Chip Select (active low) - A logic 0 on this pin selects the UART I/O for external access. Data can be transferred between the user CPU and the 155X or the 155X and the CPU.
D0-D7	1-8	1-8	43, 45-47, 3-6	I/O	Data Bus (Bi-directional) - These pins are the eight bit, tri- state data bus for transferring information to or from the controlling CPU. D0 is the least significant bit and the first data bit in a transmit or receive serial data stream.
GND	15	14	19	Pwr	Signal and power ground.
INT	18	18	23	Ο	Interrupt (three state, active high) - This function is associ- ated with UART channel interrupts (INT). INT is enabled when MCR bit-3 is set to a logic 1, interrupts are enabled in the interrupt enable register (IER), and when an interrupt condition exists. Interrupt conditions include: receiver er- rors, available receiver buffer data, transmit buffer empty, or when a modem status flag is detected.
-IOR	16	15	20	I	Read strobe. (active low strobe) - A logic 0 transition on this pin will load the contents of an Internal register defined by address bits A0-A2 onto the 155X data bus (D0-D7) for access by an external CPU.
-IOW	14	13	17	I	Write strobe. (active low strobe) - A logic 0 transition on this
Rev. 3.10					

SYMBOL DESCRIPTION

Symbol	20	Pin 28	48	Signal	Pin Description
	28	28	48	type	pin will transfer the contents of the data bus (D0-D7) from the external CPU to an internal register that is defined by address bits A0/A2.
RESET	24	24	33	I	Reset. (active high) - A logic 1 on this pin will reset the internal registers and all the outputs (Also see signal RST). The UART transmitter output and the receiver input will be disabled during reset time. (See 155X External Reset Conditions for initialization details.)
RST	-	17	22	0	Reset output (active high). This function is associated with the 28 pin ST16C1551 and the 48 pin ST16C1550/51 packages only. This function provides a buffered RESET output that operates in two modes. The modes are config- ured by IER bit-5. When IER bit-5 is a logic 0, the standard reset mode is selected and RST will follow the logical state of the RESET pin (see RESET). When IER bit-5 is a logic 1, the special mode is selected. During special mode operation, the user may send software (SOFT) resets via MCR bit-2. This is useful when the user desires the capabil- ity of resetting an externally connected device only. During special mode operation, soft resets from MCR bit 2 are "OR'd" with the state of the input pin, RESET. Therefore both reset types will be seen at the RST pin.
VCC	28	28	41	Pwr	Power supply input.
XTAL1	12		15	1	Crystal or External Clock Input - This function is associated with all packages types except the 28 pin ST16C1551, which must have external clock (see CLK). Functions as a crystal input or as an external clock input. A crystal can be connected between this pin and XTAL2 to form an internal oscillator circuit. This configuration requires an external 1 M Ω resistor between the XTAL1 and XTAL2 pins. Alternatively, an external clock can be connected to this pin to provide custom data rates (see Baud Rate Generator Programming).
XTAL2	13	-	16	0	Output of the Crystal Oscillator or Buffered Clock - (See also XTAL1) This function is associated with all packages

Rev. 3.10

SYMBOL DESCRIPTION

Symbol		Pin		Signal	Pin Description
	28	28	48	type	
					types except the 28 pin ST16C1551. The crystal oscillator output or buffered clock output should be left open if an external clock is connected to XTAL1.
-CD	27	27	40	I	Carrier Detect (active low) - A logic 0 on this pin indicates that a carrier has been detected by the modem.
-CTS	25	25	34	I	Clear to Send (active low) - A logic 0 on the -CTS pin indicates the modem or data set is ready to accept transmit data from the 155X. Status can be tested by reading MSR bit-4. This pin has no effect on the UART's transmit or receive operation.
-DSR	26	26	39	I	Data Set Ready (active low) - A logic 0 on this pin indicates the modem or data set is powered-on and is ready for data exchange with the UART. This pin has no effect on the UART's transmit or receive operation.
-DTR	23	23	32	Ο	Data Terminal Ready (active low) - A logic 0 on this pin indicates that the 155X is powered-on and ready. This pin can be controlled via the modem control register. Writing a logic 1 to MCR bit-0 will set the -DTR output to logic 0, enabling the modem. This pin will be a logic 1 after writing a logic 0 to MCR bit-0, or after a reset. This pin has no effect on the UART's transmit or receive operation.
-RI	17	16	21	I	Ring Indicator (active low) - A logic 0 on this pin indicates the modem has received a ringing signal from the telephone line. A logic 1 transition on this input pin will generate an interrupt.
-RTS	22	22	31	Ο	Request to Send (active low) - A logic 0 on the -RTS pin indicates the transmitter has data ready and waiting to send. Writing a logic 1 in the modem control register (MCR bit-1) will set this pin to a logic 0 indicating data is available. After a reset this pin will be set to a logic 1. This pin has no effect on the UART's transmit or receive operation.
RX	9	9	7	I	Receive Data - This input is associated with individual serial channel data to the 155X receive input circuit. The RX signal

Rev. 3.10

SYMBOL DESCRIPTION

Symbol	28	Pin 28	48	Signal type	Pin Description
тх	10	10	8	Ο	 will be a logic 1 during reset, idle (no data), or when the transmitter is disabled. During the local loopback mode, the RX input pin is disabled and TX data is connected to the UART RX Input, internally. Transmit Data (A-B) - This output is associated with individual serial transmit channel data from the 155X. The TX signal will be a logic 1 during reset, idle (no data), or when the transmitter is disabled. During the local loopback mode, the TX output pin is disabled and TX data is internally connected to the UART RX Input.

All unused input pins should be tied to VCC or GND.

GENERAL DESCRIPTION

The 155X provides serial asynchronous receive data synchronization, parallel-to-serial and serial-to-parallel data conversions for both the transmitter and receiver sections. These functions are necessary for converting the serial data stream into parallel data that is required with digital data systems. Synchronization for the serial data stream is accomplished by adding start and stops bits to the transmit data to form a data character (character orientated protocol). Data integrity is insured by attaching a parity bit to the data character. The parity bit is checked by the receiver for any transmission bit errors. The electronic circuitry to provide all these functions is fairly complex especially when manufactured on a single integrated silicon chip. The 155X represents such an integration with greatly enhanced features. The 1550 is fabricated with an advanced CMOS process.

The 155X is an upward solution that provides 16 bytes of transmit and receive FIFO memory, instead of none in the 16C1450. The 155X is designed to work with high speed modems and shared network environments, that require fast data processing time. Increased performance is realized in the 155X by the transmit and receive FIFOs. This allows the external processor to handle more networking tasks within a given time. For example, the ST16C1450 without a receive FIFO, will require unloading of the RHR in 93 microseconds (This example uses a character length of 11 bits, including start/stop bits at 115.2Kbps). This means the external CPU will have to service the receive FIFO less than every 100 microseconds. However with the 16 byte FIFO in the 155X, the data buffer will not require unloading/loading for 1.53 ms. This increases the service interval giving the external CPU additional time for other applications and reducing the overall UART interrupt servicing time. In addition, the 4 selectable receive FIFO trigger interrupt levels is uniquely provided for maximum data throughput performance especially when operating in a multi-channel environment. The FIFO memory greatly reduces the bandwidth requirement of the external controlling CPU, increases performance, and reduces power consumption.

The 155X is capable of operation to 1.5Mbps with a 24 MHz clock input. With a crystal or external clock input of 7.3728 MHz the user can select data rates up to 460.8 Kbps. Internal crystal clock operation is not available on the 28 pin ST16C1551.

The rich feature set of the 155X is available through internal registers. Selectable receive FIFO trigger levels, selectable TX and RX baud rates, and modem interface controls are all standard features. Following a power on reset or an external reset, the 155X is software compatible with the previous generation, ST16C1550.

FUNCTIONAL DESCRIPTIONS

UART Functions

The UART provides the user with the capability to Bidirectionally transfer information between an external CPU, the 155X package, and an external serial device. A logic 0 on the chip select pin -CS allows the user to configure, send data, and/or receive data via the UART.

Internal Registers

The 155X provides 12 internal registers for monitoring and control of the UART functions. These resisters are shown in Table 3 below. The UART registers function as data holding registers (THR/RHR), interrupt status and control registers (IER/ISR), a FIFO control register (FCR), line status and control registers (LCR/LSR), modem status and control registers (MCR/MSR), programmable data rate (clock) control registers (DLL/ DLM), and a user assessable scratchpad register (SPR).

Rev. 3.10

Table 3, INTERNAL REGISTER DECODE

A2	A1	A0	READ MODE	WRITE MODE					
Gen	General Register Set (THR/RHR, IER/ISR, MCR/MSR, LCR/LSR, SPR): Note 1*								
0 0	0 0	0 1	Receive Holding Register	Transmit Holding Register Interrupt Enable Register					
0 0	1 1	0 1	Interrupt Status Register	FIFO Control Register Line Control Register					
1	0	0		Modem Control Register					
1	0	1	Line Status Register						
1	1	0	Modem Status Register						
1	1	1	Scratchpad Register	Scratchpad Register					
Bau	Baud Rate Register Set (DLL/DLM): Note *2								
0	0	0	LSB of Divisor Latch	LSB of Divisor Latch					
0	0	1	MSB of Divisor Latch	MSB of Divisor Latch					

/ / / / / / / / / /

Note 1* The General Register set is accessible only when CS is a logic 0.

Note 2* The Baud Rate register set is accessible only when CS is a logic 0 and LCR bit-7 is a logic 1.

FIFO Operation

The 16 byte transmit and receive data FIFO's are enabled by the FIFO Control Register (FCR) bit-0. The user can set the receive trigger level via FCR bits 6/ 7 and the transmit trigger level via FCR bits 4/5. The transmit interrupt trigger level is set to 16 following a reset. The receiver FIFO section includes a time-out function to ensure data is delivered to the external CPU. An interrupt is generated whenever the Receive Holding Register (RHR) has not been read following the loading of a character or the receive trigger level has not been reached.

Time-out Interrupts

The interrupts are enabled by IER bits 0-3. Care must be taken when handling these interrupts. Following a reset the transmitter interrupt is enabled, the 155X will issue an interrupt to indicate that transmit holding register is empty. This interrupt must be serviced prior to continuing operations. The LSR register provides the current singular highest priority interrupt only. A condition can exist where a higher priority interrupt may mask the lower priority interrupt(s). Only after servicing the higher pending interrupt will the lower priority interrupt(s) be reflected in the status register. Servicing the interrupt without investigating further interrupt conditions can result in data errors.

When two interrupt conditions have the same priority, it is important to service these interrupts correctly. Receive Data Ready and Receive Time Out have the same interrupt priority (when enabled by IER bit-3). The receiver issues an interrupt after the number of characters have reached the programmed trigger level. In this case the 155X FIFO may hold more characters than the programmed trigger level. Following the removal of a data byte, the user should recheck LSR bit-0 for additional characters. A Receive Time Out will not occur if the receive FIFO is empty. The time out counter is reset at the center of each stop bit received or each time the receive holding register (RHR) is read.. The actual time out value is T (Time

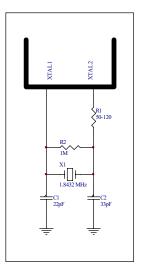
out length in bits) = $4 \times P$ (**P**rogrammed word length) + 12. To convert the time out value to a character value, the user has to consider the complete word length, including data information length, start bit, parity bit, and the size of stop bit, i.e., 1X, 1.5X, or 2X bit times.

Example -A: If the user programs a word length of 7, with no parity and one stop bit, the time out will be: T = 4 X 7(programmed word length) +12 = 40 bit times. The character time will be equal to 40 / 9 = 4.4 characters, or as shown in the fully worked out example: T = [(programmed word length = 7) + (stop bit = 1) + (start bit = 1) = 9]. 40 (bit times divided by 9) = 4.4 characters.

Example -B: If the user programs the word length = 7, with parity and one stop bit, the time out will be: $T = 4 \times 7$ (programmed word length) + 12 = 40 bit times. Character time = 40 / 10 [(programmed word length = 7) + (parity = 1) + (stop bit = 1) + (start bit = 1) = 4 characters.

Programmable Baud Rate Generator

The 155X supports high speed modem technologies that have increased input data rates by employing data compression schemes. For example a 33.6Kbps modem that employs data compression may require a 115.2Kbps input data rate. A 128.0Kbps ISDN modem that supports data compression may need an input data rate of 460.8Kbps.


A single baud rate generator is provided for both the transmitter and receiver. The programmable Baud Rate Generator is capable of accepting an input clock up to 24 MHz, as required for supporting a 1.5Mbps data rate. The 155X can be configured for internal clock (XTAL) operation on all packages except the 28 pin ST16C1551. The 28 pin ST16C1551 requires an external clock input and this device can not be configured for internal (XTAL) operation. For internal (XTAL) clock oscillator operation, an industry standard microprocessor crystal (parallel resonant/ 22-33 pF load) is connected external 1 M Ω resistor across it. Alternatively, an external clock can be connected to the XTAL1 pin to clock the internal baud rate generator for

standard or custom rates. (see Baud Rate Generator Programming).

The generator divides the input 16X clock by any divisor from 1 to 2¹⁶ -1. The 155X divides the basic external clock by 16. The basic 16X clock provides data rates to support standard and custom applications using the same system design. The data rate is configured via the DLL and DLM internal register functions. Customized Baud Rates can be achieved by selecting the proper divisor values for the MSB and LSB sections of baud rate generator.

Programming the Baud Rate Generator Registers DLM (MSB) and DLL (LSB) provides a user capability for selecting the desired final baud rate. The example in Table 4 below, shows the selectable baud rates available when using a 1.8432 MHz external clock input.

Crystal oscillator connection

Table 4, BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

Output Baud Rate	Output 16 x Clock Divisor (Decimal)	User 16 x Clock Divisor (HEX)	DLM Program Value (HEX)	DLL Program Value (HEX)
50	2304	900	09	00
75	1536	600	06	00
110	1047	417	04	17
150	768	300	03	00
300	384	180	01	80
600	192	C0	00	C0
1200	96	60	00	60
2400	48	30	00	30
3600	32	20	00	20
4800	24	18	00	18
7200	16	10	00	10
9600	12	0C	00	0C
19.2k	6	06	00	06
38.4k	3	03	00	03
57.6k	2	02	00	02
115.2k	1	01	00	01

DMA Operation

The 155X FIFO trigger level provides additional flexibility to the user for block mode operation. LSR bits 5-6 provide an indication when the transmitter is empty or has an empty location(s). The user can optionally operate the transmit and receive FIFOs in the DMA mode (FCR bit-3). When the transmit and receive FIFOs are enabled (FCR bit 0 = logic 1) and the DMA mode "0" is selected (FCR bit-3 = logic 0), the 155X activates the interrupt output pin for each data transmit or receive operation. When DMA mode "1" is activated (FCR bits 0 and 3 = logic 1), the user takes the advantage of block mode operation by loading or unloading the FIFOs in a block sequence determined by the receive trigger level and the transmit trigger level. In this mode, the 155X sets the interrupt output pin when characters in the transmit FIFO is below the transmit trigger level, or the characters in the receive FIFOs are above the receive trigger level.

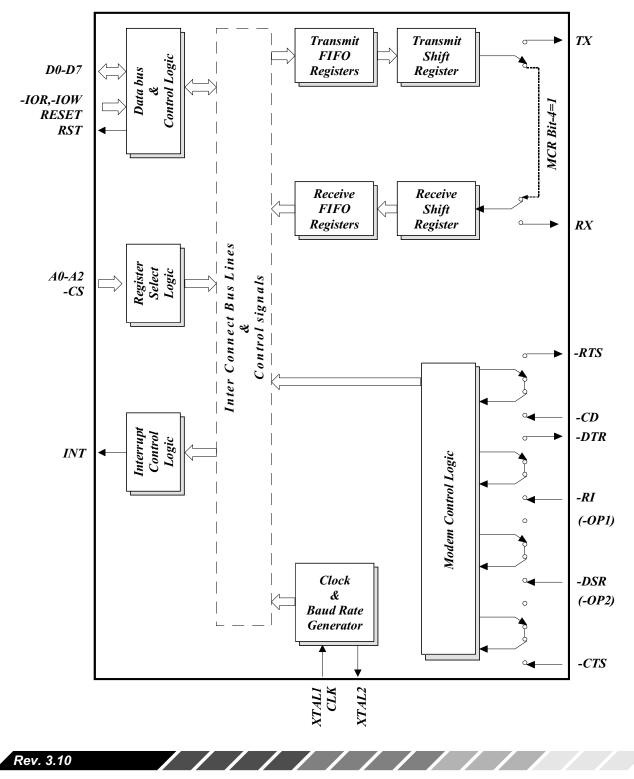
Special (Enhanced Feature) Mode

The 155X supports the standard features of the ST16C550. In addition the 155X supports two enhanced features not available on the ST16C550 package. These features are enabled by bit-5 of the IER register and include a software controllable (SOFT) reset and a power down feature. The power down feature (controlled by MCR bit-7) provides the user with the capability to conserve power when the package is not in actual use with out destroying internal register configuration data. This allows quick turnarounds from power down to returned package operation. Each package type, with the exception of the 28 pin 1550, provides a buffered reset output that can be controlled through user software. When enabled by the IER register, MCR bit-7 can be used to power down the 155X and/or MCR bit-2 can be used to initiate a SOFT reset at the RST output pin. A third feature available on 16C550 but not the 16C450, involves

Rev. 3.10

FIFO monitoring. IER bit-5 additionally enables/disables the DMA monitor signals TXRDY and RXRDY in the ISR register (bits 4-5). These signals monitor the FIFO fill levels when the FIFOs are enabled for block mode operations (DMA). Soft resets are useful when the user desires the capability of resetting an externally connected device only. During special mode operation, soft resets from MCR bit 2 are "OR'd" with resets on the input pin, RESET. Therefore both reset types will be seen at the RST pin.

Loopback Mode


The internal loopback capability allows onboard diagnostics. In the loopback mode the normal modem interface pins are disconnected and reconfigured for loopback internally. MCR register bits 0-3 are used for controlling loopback diagnostic testing. In the loopback mode INT enable and MCR bit-2 in the MCR register (bits 3/2) control the modem -RI and -CD inputs respectively. MCR signals -DTR and -RTS (bits 0-1) are used to control the modem -CTS and -DSR inputs respectively. The transmitter output (TX) and the receiver input (RX) are disconnected from their associated interface pins, and instead are connected together internally (See Figure 4). The -CTS, -DSR, -CD, and -RI are disconnected from their normal modem control inputs pins, and instead are connected internally to -DTR, -RTS, INT enable and MCR bit-2. Loopback test data is entered into the transmit holding register via the user data bus interface, D0-D7. The transmit UART serializes the data and passes the serial data to the receive UART via the internal loopback connection. The receive UART converts the serial data back into parallel data that is then made available at the user data interface, D0-D7. The user optionally compares the received data to the initial transmitted data for verifying error free operation of the UART TX/RX circuits.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational. However, the interrupts can only be read using lower four bits of the Modem Control Register (MCR bits 0-3) instead of the four Modem Status Register bits 4-7. The interrupts are still controlled by the IER.

Rev. 3.10

Figure 4, INTERNAL LOOPBACK MODE DIAGRAM

REGISTER FUNCTIONAL DESCRIPTIONS

The following table delineates the assigned bit functions for the twelve 155X internal registers. The assigned bit functions are more fully defined in the following paragraphs.

A2	A1	A0	Register [Default] Note 3*	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
	General Register Set: Note 1*										
0	0	0	RHR [XX]	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR [XX]	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER [00]	0	0	Special Mode Enable	0	Modem Status Interrupt	Receive Line Status interrupt	Transmit Holding Register interrupt	Receive Holding Register interrupt
0	1	0	FCR [00]	RX trigger (MSB)	RX trigger (LSB)	TX trigger (MSB)	TX Trigger (LSB)	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR [01]	FIFO's enabled	FIFO's enabled	RXRDY	TXRDY	INT priority bit-2	INT priority bit-1	INT priority bit-0	INT status
0	1	1	LCR [00]	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR [00]	Power Down	0	0	loop back	INT enable	SOFT Reset	-RTS	-DTR
1	0	1	LSR [60]	FIFO data error	THR & TSR empty	THR. empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR [X0]	CD	RI	DSR	стѕ	delta -CD	delta -RI	delta -DSR	delta -CTS
1	1	1	SPR [FF]	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
	Sp	ecial	Register S	et: Note *	2						
0	0	0	DLL[XX]	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM[XX]	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

Table 5, ST16C155X INTERNAL REGISTERS

Note 1* The General Register set is accessible only when CS is a logic 0.

Note 2^* The Baud Rate register set is accessible only when CS is a logic 0 and LCR bit-7 is a logic 1. Note 3^* The value between the square brackets represents the register's initialized HEX value, X = N/A.

/ / / /

Rev. 3.10

Transmit (THR) and Receive (RHR) Holding Registers

The serial transmitter section consists of an 8-bit Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the THR is provided in the Line Status Register (LSR). Writing to the THR transfers the contents of the data bus (D7-D0) to the TSR and UART via the THR, providing that the THR is empty. The THR empty flag in the LSR register will be set to a logic 1 when the transmitter is empty or when data is transferred to the TSR. Note that a write operation can be performed when the transmit holding register empty flag is set (logic 0 = FIFO full, logic 1= at least one FIFO location available).

The serial receive section also contains an 8-bit Receive Holding Register, RHR and a Receive Serial Shift Register (RSR). Receive data is removed from the 155X and receive FIFO by reading the RHR register. The receive section provides a mechanism to prevent false starts. On the falling edge of a start or false start bit, an internal receiver counter starts counting clocks at the 16x clock rate. After 7 1/2 clocks the start bit time should be shifted to the center of the start bit. At this time the start bit is sampled and if it is still a logic 0 it is validated. Evaluating the start bit in this manner prevents the receiver from assembling a false character. Receiver status codes will be posted in the LSR.

Interrupt Enable Register (IER)

The Interrupt Enable Register (IER) masks the interrupts from receiver ready, transmitter empty, line status and modem status registers. These interrupts would normally be activated at the INT output pin.

IER Vs Transmit/Receive FIFO Interrupt Mode Operation

When the transmit/receive FIFO (FCR BIT-0) and transmit/receive interrupts (IER BIT-0) are enabled (equal to a logic 1), the transmit/receive interrupts and register status will reflect the following:

A) The receive RXRDY interrupt (Level 2 ISR interrupt) is issued to the external CPU when the receive

FIFO has reached the programmed trigger level. It will be cleared when the receive FIFO drops below the programmed trigger level.

B) Receive FIFO status will also be reflected in the user accessible ISR register when the receive FIFO trigger level is reached. Both the ISR register receive status bit and the interrupt will be cleared when the FIFO drops below the trigger level.

C) The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register (RSR) to the receive FIFO. It is reset when the FIFO is empty.

D) When the Transmit FIFO and interrupts are enabled, an interrupt is generated when the transmit FIFO is below the transmit trigger level due to the unloading of the data by the TSR and UART for transmission via the transmission media. The interrupt is cleared either by reading the ISR register or by loading the THR with enough new characters to load the FIFO above the trigger level.

IER Vs Receive/Transmit FIFO Polled Mode Operation

When FCR BIT-0 equals a logic 1; resetting IER bits 0-3 enables the 155X in the FIFO polled mode of operation. In this mode interrupts are not generated and the user must poll the LSR register for TX and/or RX data status. Since the receiver and transmitter have separate bits in the LSR either or both can be used in the polled mode by selecting respective transmit or receive control bit(s).

A) LSR BIT-0 will be a logic 1 as long as there is one byte in the receive FIFO.

B) LSR BIT 1-4 will provide the type of receive errors, or a receive break, if encountered.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both the transmit FIFO and transmit shift register are empty.

Rev. 3.10

E) LSR BIT-7 will show if any FIFO data errors occurred.

IER BIT-0:

In the 16C450 mode, This interrupt will be issued when the RHR has data or is cleared when the RHR is empty. In the FIFO mode, this interrupt will be issued when the FIFO has reached the programmed trigger level or is cleared when the FIFO drops below the trigger level.

Logic 0 = Disable the receiver ready (ISR level 2, RXRDY) interrupt. (normal default condition)

Logic 1 = Enable the RXRDY (ISR level 2) interrupt.

IER BIT-1:

In the 16C450 mode, this interrupt will be issued whenever the THR is empty and is associated with bit-5 in the LSR register. In the FIFO modes, this interrupt will be issued whenever the FIFO and THR are empty Logic 0 = Disable the Transmit Holding Register Empty (TXRDY) interrupt. (normal default condition) Logic 1 = Enable the TXRDY (ISR level 3) interrupt.

IER BIT-2:

This interrupt will be issued whenever an receive data error condition exists as reflected in LSR bits 1-4. Logic 0 = Disable the receiver line status interrupt. (normal default condition)

Logic 1 = Enable the receiver line status interrupt.

IER BIT-3:

This interrupt will be issued whenever there is a modem status change as reflected in MSR bits 0-3. Logic 0 = Disable the modem status register interrupt. (normal default condition)

Logic 1 = Enable the modem status register interrupt.

IER BIT 4-:

Not Used - initialized to a logic 0.

IER BIT 5:

This bit is used to enable the enhanced features of the 155X. Enhanced features include the DMA monitor function (TXRDY/RXRDY), the SOFT reset function, and the power down function. When enabled (IER bit-5 = a logic 1), a logic 1 at MCR bit will power down the 155X, the logical state of MCR bit-2 will be reflected at the RST output pin, and TXRDY/RXRDY status will be

made available in the ISR register (bits 4-5).

Logic 0 = enable basic ST16C450 functions only. (normal default condition).

Logic 1 = enable special mode functions in addition to basic ST16C450 functions, i.e., enable ISR bits 4-5 (TXRDY/RXRDY), MCR bit-2 (soft reset) and MCR bit-7 (power down) functions.

IER BIT 6-7-: Not Used - initialized to a logic 0.

FIFO Control Register (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receive FIFO trigger levels, and select the DMA mode. The DMA, and FIFO modes are defined as follows:

DMA MODE

Mode 0

Set and enable the interrupt for each single transmit or receive operation, and is similar to the ST16C450 mode. Transmit Ready (-TXRDY) will generate an interrupt when ever an empty transmit space is available in the Transmit Holding Register (THR) and TXRDY is enabled by IER bit-5. Receive Ready (-RXRDY) will generate an interrupt whenever the Receive Holding Register (RHR) is loaded with a character and RXRDY is enabled by IER bit-5. Both TXRDY and RXRDY may be viewed at any time by reading ISR bits 4-5 respectively.

Mode 1 Set and enable the interrupt in a block mode operation. The transmit interrupt is set when the transmit FIFO is below the programmed trigger level. -TXRDY, when enabled by IER bit 5, will generate an interrupt as long as one empty FIFO location is available. The receive interrupt is set when the receive FIFO fills to the programmed trigger level, if enabled be IER bit-5. However the FIFO continues to fill regardless of the programmed level until the FIFO is full. TXRDY and RXRDY may be viewed at any time by reading ISR bits 4-5 respectively. -RXRDY remains a logic 0 as long as the FIFO fill level is above the programmed trigger level.

FCR BIT-0:

Logic 0 = Disable the transmit and receive FIFO.

(normal default condition)

Logic 1 = Enable the transmit and receive FIFO. <u>This</u> bit must be a "1" when other FCR bits are written to or they will not be programmed.

FCR BIT-1:

Logic 0 = No FIFO receive reset. (normal default condition)

Logic 1 = Clears the contents of the receive FIFO and resets the FIFO counter logic (the receive shift register is not cleared or altered). This bit will return to a logic 0 after clearing the FIFO.

FCR BIT-2:

Logic 0 = No FIFO transmit reset. (normal default condition)

Logic 1 = Clears the contents of the transmit FIFO and resets the FIFO counter logic (the transmit shift register is not cleared or altered). This bit will return to a logic 0 after clearing the FIFO.

FCR BIT-3:

Logic 0 = Set DMA mode "0". (normal default condition)

Logic 1 = Set DMA mode "1."

Transmit operation in mode "0":

When the 155X is in the ST16C450 mode (FIFOs disabled, FCR bit-0 = logic 0) or in the FIFO mode (FIFOs enabled, FCR bit-0 = logic 1, FCR bit-3 = logic 0) and when there are no characters in the transmit FIFO or transmit holding register, TXRDY, bit 4 in the ISR will be a logic 0. Once active TXRDY will go to a logic 1 after the first character is loaded into the transmit holding register.

Receive operation in mode "0":

When the 155X is in mode "0" (FCR bit-0 = logic 0) or in the FIFO mode (FCR bit-0 = logic 1, FCR bit-3 = logic 0) and there is at least one character in the receive FIFO, RXRDY, bit 5 in the ISR will be a logic 0. Once active, RXRDY will go to a logic 1 when there are no more characters in the receiver.

Transmit operation in mode "1":

When the 155X is in FIFO mode (FCR bit-0 = logic 1, FCR bit-3 = logic 1), TXRDY bit-4 in the ISR register will be a logic 1 when the transmit FIFO is completely

full. TXRDY will be a logic 0 if one or more FIFO locations are empty.

Receive operation in mode "1":

When the 155X is in FIFO mode (FCR bit-0 = logic 1, FCR bit-3 = logic 1) and the trigger level has been reached, or a Receive Time Out has occurred, RXRDY, bit-5 in the ISR will go to a logic 0. Once activated, RXRDY will go to a logic 1 after there are no more characters in the FIFO.

FCR BIT 4-5: (logic 0 or cleared is the default condition, TX trigger level = 1)

These bits are used to set the trigger level for the transmit FIFO interrupt. The 155X will issue a transmit empty interrupt when the number of characters in FIFO drops below the selected trigger level.

BIT-5	BIT-4	TX FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14

FCR BIT 6-7: (logic 0 or cleared is the default condition, RX trigger level = 1)

These bits are used to set the trigger level for the receive FIFO interrupt.

An interrupt is generated when the number of characters in the FIFO equals the programmed trigger level. However the FIFO will continue to be loaded until it is full.

BIT-7	BIT-6	RX FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14

Interrupt Status Register (ISR)

The 155X provides four levels of prioritized interrupts

Rev. 3.10

to minimize external software interaction. The Interrupt Status Register (ISR) provides the user with four interrupt status bits. Performing a read cycle on the ISR will provide the user with the highest pending interrupt level to be serviced. No other interrupts are acknowledged until the pending interrupt is serviced. Whenever the interrupt status register is read, the interrupt status is cleared. However it should be noted that only the current pending interrupt is cleared by the read. A lower level interrupt may be seen after rereading the interrupt status bits. The Interrupt Source Table 6 (below) shows the data values (bits 0-3) for the four prioritized interrupt levels and the interrupt sources associated with each of these interrupt levels:

Priority Level	[ISR BITS] Bit-3 Bit-2 Bit-1 Bit-0				Source of the interrupt
1 2 2 3 4	0 0 1 0 0	1 1 1 0 0	1 0 0 1 0	0 0 0 0	LSR (Receiver Line Status Register) RXRDY (Received Data Ready) RXRDY (Receive Data time out) TXRDY (Transmitter Holding Register Empty) MSR (Modem Status Register)

Table 6, INTERRUPT SOURCE TABLE

ISR BIT-0:

Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

Logic 1 = No interrupt pending. (normal default condition)

ISR BIT 1-3: (logic 0 or cleared is the default condition) These bits indicate the source for a pending interrupt at interrupt priority levels 1, 2, 3, and 4 (See Interrupt Source Table).

ISR BIT 4:

This bit represents the compliment (inversion) of the TXRDY status when IER bit-5 is set to a logic 1. Logic 0 = The UART transmitter is full.

Logic 1 = The UART transmitter is empty or is less than empty in the FIFO mode. (normal default condition)

ISR BIT 5:

This bit represents the compliment (inversion) of the RXRDY status when IER bit-5 is set to a logic 1. Logic 0 = The UART receiver is empty. (normal default condition)

Logic 1 = The UART receiver is not empty.

ISR BIT 6-7: (logic 0 or cleared is the default condition) These bits are set to a logic 0 when the FIFOs are not being used in the 16C450 mode. They are set to a logic 1 when the FIFOs are enabled in the ST16C550 mode. Logic 0 = 16C450 mode.

Logic 1 = 16C550 mode.

Line Control Register (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The word length, the number of stop bits, and the parity are selected by writing the appropriate bits in this register.

Rev. 3.10

/ / / / /

LCR BIT 0-1: (logic 0 or cleared is the default condition)

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0 1	5 6
1 1	0 1	7 8

LCR BIT-2: (logic 0 or cleared is the default condition) The length of stop bit is specified by this bit in conjunction with the programmed word length.

BIT-2	Word length	Stop bit length (Bit time(s))
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. Logic 0 = No parity. (normal default condition) Logic 1 = A parity bit is generated during the transmission, receiver checks the data and parity for transmission errors.

LCR BIT-4:

If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR BIT-4 selects the even or odd parity format. Logic 0 = ODD Parity is generated by forcing an odd number of logic 1's in the transmitted data. The receiver must be programmed to check the same format. (normal default condition)

Logic 1 = EVEN Parity is generated by forcing an even the number of logic 1's in the transmitted. The receiver must be programmed to check the same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5 = logic 0, parity is not forced. (normal default condition)

LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit is forced to a logical 1 for the transmit and receive data.

LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit is forced to a logical 0 for the transmit and receive data.

LCR	LCR	LCR	Parity selection
Bit-5	Bit-4	Bit-3	
X 0 1 1	X 0 1 0 1	0 1 1 1	No parity Odd parity Even parity Force parity "1" Forced parity "0"

LCR BIT-6:

When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a logic 0 state). This condition exists until disabled by setting LCR bit-6 to a logic 0.

Logic 0 = No TX break condition. (normal default condition)

Logic 1 = Forces the transmitter output (TX) to a logic 0 for alerting the remote receiver to a line break condition.

LCR BIT-7:

The internal baud rate counter latch and Enhance Feature mode enable.

Logic 0 = Divisor latch disabled. (normal default condition)

Logic 1 = Divisor latch and enhanced feature register enabled.

Modem Control Register (MCR)

This register controls the interface with the modem or a peripheral device.

Rev. 3.10

MCR BIT-0: Logic 0 = Force -DTR output to a logic 1. (normal default condition) Logic 1 = Force -DTR output to a logic 0.

MCR BIT-1:

Logic 0 = Force -RTS output to a logic 1. (normal default condition) Logic 1 = Force -RTS output to a logic 0.

MCR BIT-2:

In the normal mode, this bit is associated the RST (buffered reset output) function and is enabled by bit-5 of the IER register. The RST function is available on 28 pin ST16C1551 package only. The 48 pin ST16C1550/51 package all provide the RST function. While in the normal mode, the logical state of the RST pin will follow exactly the logical state of RESET pin, i.e., soft resets are disabled. During special mode operation, soft resets from MCR bit 2 are "OR'd" with the state of the input pin, RESET. Therefore both reset types will be seen at the RST pin.

Logic 0 = The RST output pin is a logic 0. (normal default condition)

Logic 1 = The RST output pin is a logic 1

In the loopback mode where MCR bit-4 is a logic 1 this bit is used to write the state of the modem -RI interface signal.

Loopback mode, Logic 0 = sets -RI internally to a logic 1.

Loopback mode, Logic 1 = sets -RI internally to a logic 0.

MCR BIT-3

This bit controls the tri-state interrupt function or in the loopback mode this bit is used to control the modem -CD signal.

Logic 0 = Forces INT outputs to the tri-state mode or sets -CD to a logic 1 in the loopback mode. (normal default condition).

Logic 1 = Forces the INT outputs to the active mode or sets -CD to a logic 0 in the loopback mode.

In the Loopback mode, sets -CD internally to a logic 0.

MCR BIT-4:

Enable the local loop-back mode (diagnostics). In this mode the transmitter output (-TX) and the receiver input (-RX), -CTS, -DSR, -CD, and -RI are disconnected from the 155X I/O pins. Internally the modem data and control pins are connected into a loopback data configuration. In this mode, the receiver and transmitter interrupts remain fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are switched to the lower four bits of the Modem Control. Interrupts continue to be controlled by the IER register.

Logic 0 = Disable loopback mode. (normal default condition)

Logic 1 = Enable local loopback mode (diagnostics).

MCR BIT 5-6: Not Used - initialized to a logic 0.

MCR BIT-7:

Logic 0 = No power down mode. (normal default condition)

Logic 1 = Enable power down mode with baud rate generator circuitry disabled.

Line Status Register (LSR)

This register provides the status of data transfers between. the 155X and the CPU.

LSR BIT-0:

Logic 0 = No data in receive holding register or FIFO. (normal default condition)

Logic 1 = Data has been received and is saved in the receive holding register (RHR) or FIFO.

LSR BIT-1:

Logic 0 = No overrun error. (normal default condition) Logic 1 = Overrun error. A data overrun error occurred in the receive shift register. This happens when additional data arrives while the FIFO is full. In this case the previous data in the shift register is overwritten. Note that under this condition the data byte in the receive shift register is not transferred into the FIFO, therefore the data in the FIFO is not corrupted by the error.

Rev. 3.10

LSR BIT-2:

Logic 0 = No parity error. (normal default condition) Logic 1 = Parity error. The receive character does not have correct parity information and is suspect. In the FIFO mode, this error is associated with the character at the top of the FIFO.

LSR BIT-3:

Logic 0 = No framing error. (normal default condition) Logic 1 = Framing error. The receive character did not have a valid stop bit(s). In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

Logic 0 = No break condition. (normal default condition)

Logic 1 = The receiver received a break signal (RX was a logic 0 for at least one character frame time). In the FIFO mode, only one break character is loaded into the FIFO.

LSR BIT-5:

This bit is the Transmit Holding Register Empty indicator. This bit indicates that the UART is ready to accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to CPU when the THR interrupt enable is set. The THR bit is set to a logic 1 when a character is transferred from the transmit holding register into the transmitter shift register. The bit is reset to logic 0 concurrently with the loading of the transmitter holding register by the CPU. In the FIFO mode this bit is set when the transmit FIFO is empty; it is cleared when at least 1 byte is written to the transmit FIFO.

LSR BIT-6:

This bit is the Transmit Empty indicator. This bit is set to a logic 1 whenever the transmit holding register and the transmit shift register are both empty. It is reset to logic 0 whenever either the THR or TSR contains a data character. In the FIFO mode this bit is set to one whenever the transmit FIFO and transmit shift register are both empty.

LSR BIT-7:

Logic 0 = No Error. (normal default condition) Logic 1 = At least one parity error, framing error or break indication is in the current FIFO data. This bit is cleared when LSR register is read.

Modem Status Register (MSR)

This register provides the current state of the control interface signals from the modem, or other peripheral device that the 155X is connected to. Four bits of this register are used to indicate the changed information. These bits are set to a logic 1 whenever a control input from the modem changes state. These bits are set to a logic 0 whenever the CPU reads this register.

MSR BIT-0:

Logic 0 = No -CTS Change (normal default condition) Logic 1 = The -CTS input to the 155X has changed state since the last time it was read. A modem Status Interrupt will be generated.

MSR BIT-1:

Logic 0 = No -DSR Change. (normal default condition) Logic 1 = The -DSR input to the 155X has changed state since the last time it was read. A modem Status Interrupt will be generated.

MSR BIT-2:

Logic 0 = No -RI Change. (normal default condition) Logic 1 = The -RI input to the 155X has changed from a logic 0 to a logic 1. A modem Status Interrupt will be generated.

MSR BIT-3:

Logic 0 = No -CD Change. (normal default condition) Logic 1 = Indicates that the -CD input to the has changed state since the last time it was read. A modem Status Interrupt will be generated.

MSR BIT-4:

During normal operation, this bit is the compliment of the -CTS input. During the loopback mode this bit is equivalent to MCR bit-1 (-RTS).

MSR BIT-5:

During normal operation, this bit is the compliment of the -DSR input. During the loopback mode, this bit is equivalent to MCR bit-0 (-DTR).

MSR BIT-6:

During normal operation, this bit is the compliment of

the -RI input. Reading this bit in the loopback mode produces the state of MCR bit-2 for packages supporting the RST (soft reset) feature. The RST function is associated with the 28 pin ST16C1551 and the 48 pin ST16C1550/51 package only.

MSR BIT-7:

During normal operation, this bit is the compliment of the -CD input. Reading this bit in the loopback mode produces the state of MCR bit-3 (INT - Interrupt).

Note: Whenever any MSR bit(s) 0-3: are set to logic "1", a MODEM Status Interrupt will be generated.

Scratchpad Register (SPR)

The ST16C155X provides a temporary data register to store 8 bits of user information.

ST16C1550/51 EXTERNAL RESET CONDITIONS

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
FCR	FCR BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals

SIGNALS	RESET STATE
TX	High
SOFT reset	High
-RTS	High
-DTR	High
INT	Three state

Rev. 3.10

AC ELECTRICAL CHARACTERISTICS

 $T_A = 0^{\circ} - 70^{\circ}C$ (-40° - +85°C for Industrial grade packages), Vcc=3.3 - 5.0 V ± 10% unless otherwise specified.

Symbol	Parameter		nits .3		nits .0	Units	Conditions
		Min	Max	Min	Max		
T _{1w} ,T _{2w}	Clock pulse duration	17		17		ns	
T _{3w} 2w	Oscillator/Clock frequency		8		24	MHz	
T _{4w}	Address strobe width	35		25		ns	
T _{6s}	Address setup time	5		0		ns	
I _{7d}	-IOR delay from chip select	10		10		ns	
7	-IOR strobe width	35		25		ns	
T _{7h}	Chip select hold time from -IOR	0		0		ns	
T _{9d}	Read cycle delay	40		30		ns	
T _{12d}	Delay from -IOR to data		35		25	ns	
1 _{12h}	Data disable time		25		15	ns	
T _{13d}	-IOW delay from chip select	10		10		ns	
T _{13w}	-IOW strobe width	40		25		ns	
T _{13h}	Chip select hold time from -IOW	0		0		ns	
T _{15d}	Write cycle delay	40		30		ns	
T _{16s}	Data setup time	20		15		ns	
T _{16h}	Data hold time	5		5		ns	
17d	Delay from -IOW to output		50		40	ns	100 pF load
T _{18d}	Delay to set interrupt from MODEM input		40		35	ns	100 pF load
T _{19d}	Delay to reset interrupt from -IOR		40		35	ns	100 pF load
T _{20d}	Delay from stop to set interrupt		1		1	Rclk	-
T _{21d}	Delay from -IOR to reset interrupt		45		40	ns	100 pF load
T _{22d}	Delay from stop to interrupt		45		40	ns	-
T _{23d}	Delay from initial INT reset to transmit	8	24	8	24	Rclk	
	start						
$T_{_{24d}}$	Delay from -IOW to reset interrupt		45		40	ns	
T _R	Reset pulse width	40		40		ns	
N	Baud rate devisor	1	2 ¹⁶ -1	1	2 ¹⁶ -1	Rclk	

ABSOLUTE MAXIMUM RATINGS

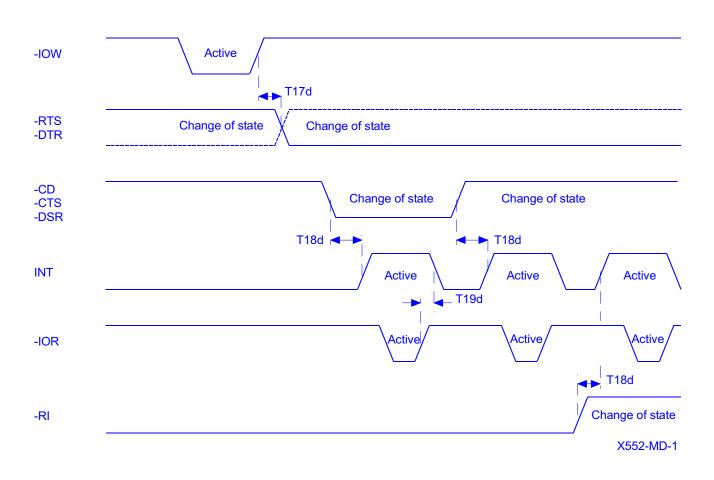
Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND - 0.3 V to VCC +0.3 V -40° C to +85° C -65° C to 150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

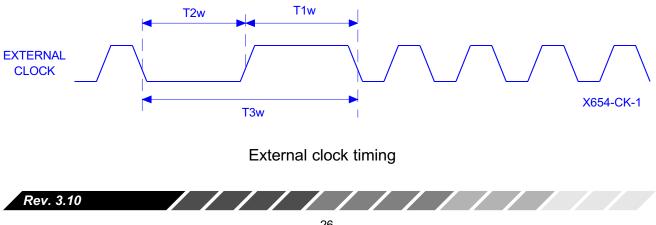
 $T_{A}=0^{\circ}$ - 70°C (-40° - +85°C for Industrial grade packages), Vcc=3.3 - 5.0 V ± 10% unless otherwise specified.

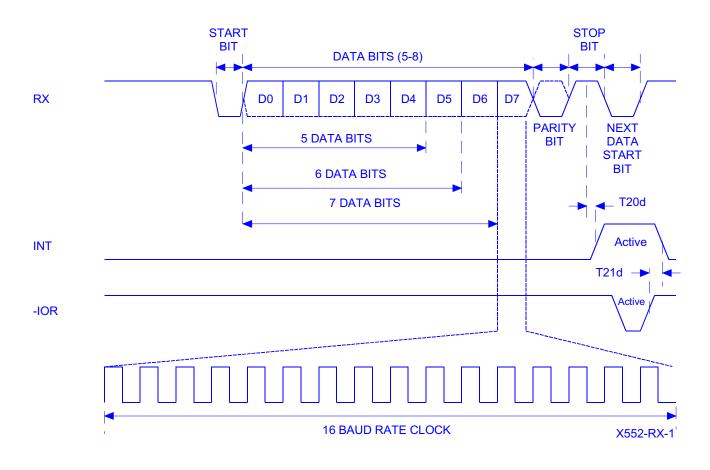
Symbol	Parameter		nits .3		nits .0	Units	Conditions
		Min	Max	Min	Max		
V _{ILCK}	Clock input low level	-0.3	0.6	-0.5	0.6	V	
V _{IHCK}	Clock input high level	2.4	VCC	3.0	VCC	V	
V	Input low level	-0.3	0.8	-0.5	0.8	V	
V _{IH}	Input high level	2.0		2.2	VCC	V	
V _{OI}	Output low level on all outputs				0.4	V	I _{oL} = 5 mA
V _{OL} V _{OH}	Output low level on all outputs		0.4			V	$I_{0} = 4 \text{ mA}$
V _{OH}	Output high level			2.4		V	l _{он} = -5 mA
V _{OH}	Output high level	2.0				V	I _{он} = -1 mA
	Input leakage		±10		±10	μA	0.1
	Clock leakage		±10		±10	μA	
	Avg power supply current		1.3		3	mA	
I _{cc} C _P	Input capacitance		5		5	pF	

Rev. 3.10

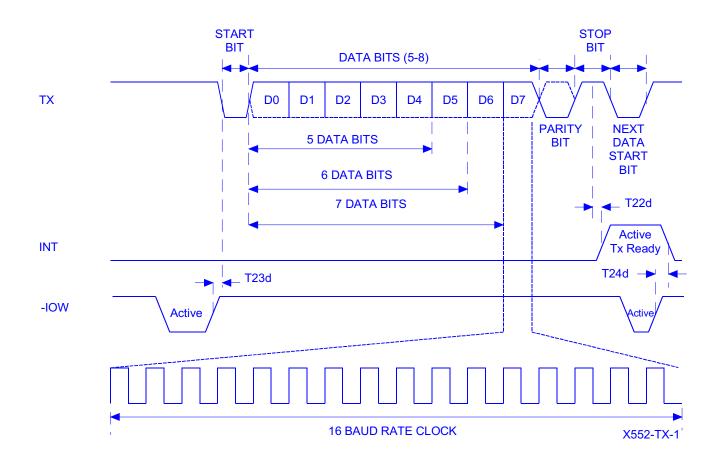


General write timing

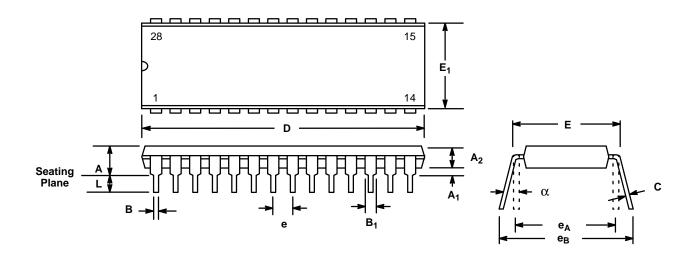




Modem input/output timing



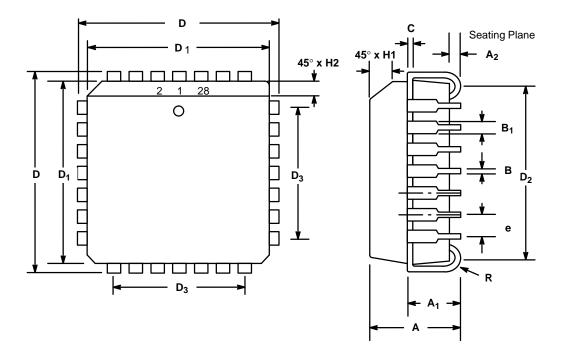
Receive timing


Transmit timing

Package Dimensions

28 LEAD PLASTIC DUAL-IN-LINE (600 MIL PDIP)

Rev. 1.00

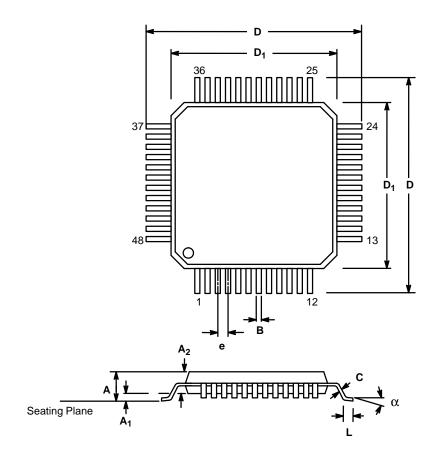

	INC	HES	MILLIN	IETERS	
SYMBOL	MIN	MAX	MIN	MAX	
А	0.160	0.250	4.06	6.35	
A ₁	0.015	0.070	0.38	1.78	
A ₂	0.125	0.195	3.18	4.95	
В	0.014	0.024	0.36	0.56	
B ₁	0.030	0.070	0.76	1.78	
С	0.008	0.014	0.20	0.38	
D	1.380	1.565	35.05	39.75	
E	0.600	0.625	15.24	15.88	
E ₁	0.485	0.580	12.32	14.73	
е	0.10	0 BSC	2.5	4 BSC	
e _A	0.6	00 BSC	15.24 BSC		
e _B	0.600	0.700	15.24	17.78	
L	0.115	0.200	2.92	5.08	
α	0°	15°	0°	15°	

Note: The control dimension is the inch column

Package Dimensions

28 LEAD PLASTIC LEADED CHIP CARRIER (PLCC)

Rev. 1.00


	INC	CHES	MILLI	METERS
SYMBOL	MIN	МАХ	MIN	MAX
А	0.165	0.180	4.19	4.57
A ₁	0.090	0.120	2.29	3.05
A ₂	0.020		0.51	
В	0.013	0.021	0.33	0.53
B ₁	0.026	0.032	0.66	0.81
С	0.008	0.013	0.19	0.32
D	0.485	0.495	12.32	12.57
D ₁	0.450	0.456	11.43	11.58
D ₂	0.390	0.430	9.91	10.92
D ₃	0.3	00 typ.	7.6	2 typ.
е	0.0	50 BSC	1.2	7 BSC
H1	0.042	0.056	1.07	1.42
H2	0.042	0.048	1.07	1.22
R	0.025	0.045	0.64	1.14

Note: The control dimension is the inch column

Package Dimensions

48 LEAD THIN QUAD FLAT PACK (7 x 7 x 1.0 mm, TQFP)

Rev. 1.00

	IN	CHES	MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	МАХ
А	0.039	0.047	1.00	1.20
A ₁	0.002	0.006	0.05	0.15
A ₂	0.037	0.041	0.95	1.05
В	0.007	0.011	0.17	0.27
С	0.004	0.008	0.09	0.20
D	0.346	0.362	8.80	9.20
D ₁	0.272	0.280	6.90	7.10
е	0.0	0.020 BSC 0.50 BSC		
L	0.018	0.030	0.45	0.75
α	0°	7°	0°	7°

Note: The control dimension is the millimeter column

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1991 EXAR Corporation

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

