

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8794 A,B & M

÷ 8 CONTROL CIRCUIT FOR 2 - MODULUS DIVIDERS

The SP8794 is a divide by eight counter designed for use with 2-modulus counters. It increases the minimum division ratio of the 2-modulus counter while retaining the same difference in division ratios. Thus a divide by 10 or 11 with the SP8794 becomes a divide by 80 or 81, a divide by 5 or 6 becomes a divide by 40 or 41.

The function is especially useful in low power frequency synthesisers because it can bring the output frequency of the combined 2-modulus counter and SP8794 into the region where CMOS or low power TTL can control the divider

The device interfaces easily to the SP8000 range of 2-modulus dividers. The control I/Ps are TTL and CMOS compatible and the output is a free collector which, with the addition of a pull-up resistor, interfaces to CMOS and TTL.

The SP8794 is available over three temperature ranges: 0° C to $+70^{\circ}$ C (SP8794B), -40° C to $+85^{\circ}$ C (SP8794M) and -55° C to $+125^{\circ}$ C (SP8794A).

The SP8794 requires supplies of OV and +5V ± 0.25V

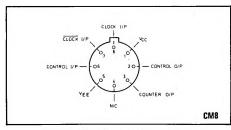


Fig. 1 Pin connections.

FEATURES

- Ultra-Low Power: 40mW
- Full Military Temperature Range
- Direct I/P & O/P Interfacing to CMOS & TTL
- Operates with 500MHz ÷ 10/11

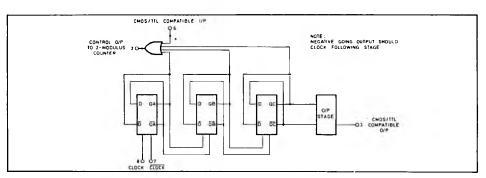


Fig. 2 Logic diagram.

ABSOLUTE MAXIMUM RATINGS

APPLICATION

Power supply voltage | V_{CC} - V_{EE} | 8V Frequency Synthesisers
DC input voltage Not greater than supply
AC input voltage 2.5Vp-p
Output bias voltage 12V
Control input bias voltage 12V
Operating juntion temperature +150°C
Storage temp. range -55°C to 150°C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

'A' grade $-55\,^\circ\text{C}$ to $+125\,^\circ\text{C}$ 'B' grade $0\,^\circ\text{C}$ to $+70\,^\circ\text{C}$ 'M' grade $-40\,^\circ\text{C}$ to $+85\,^\circ\text{C}$

V_{CC} = +5V ±5%

VEE - OV

Clock input voltage with double complementary drive to CLOCK and CLOCK = 300mV to 1V p-p.

Characteristic	Value				
	Min.	Тур.	Max.	Units	Conditions
Dynamic					
Toggle frequency	120			MHz	SP8794 as a prescaler (see note 1)
	40	<u>l</u>		MHz	SP8794 controlling a 2-modulus
		ĺ			divider (see note 1)
Min. toggle frequency with sinewave input			20	MHz	See note 2
Min. toggle frequency with square wave input	0			Hz	Slew rate > 50V/µs
Clock to O/P delay (O/P -ve going)		18		ns	
Clock to O/P delay (O/P +ve going)		32		ns	
Control I/P to control O/P delay (O/P -ve going)		20		ns	$10 \mathrm{k}\Omega$ pulldown on O/P, see note 5
Control I/P to control O/P delay (O/P +ve goipg)		10		ns	$10k\Omega$ pulldown on O/P, see note 5
Control I/P to control O/P delay (O/P -ve going)		12		ns	4.3k Ω pulldown on O/P, see note ϵ
Control I/P to control O/P delay (O/P +ve going)		9		ns	4.3k Ω pulldown on O/P, see note 6
Clock to control O/P delay (O/P -ve going)		30		ns	$10 \mathrm{k}\Omega$ pulldown on O/P, see note 5
Clock to control O/P delay (O/P +ve going)		16		ns	$10k\Omega$ pulldown on O/P, see note 5
Clock to control O/P delay (O/P -ve going)		21		ns	4.3k Ω pulldown on O/P, see note 6
Clock to control O/P delay (O/P +ve going)		16		ns	4.3k Ω pulldown on O/P, see note 6
Static			}		
Control I/P voltage level			1		
High state	3.5		10	V	See note 3
Low state	0		1.5	V	
Output voltage level					
V _{OL}			0.4	V	Sink current = 6.0mA
V _{OH} (see note 4)		l	12	V	See note 4
Input impedance		1.6		kΩ	f _{in} = 0Hz
I/P bias voltage (CLOCK & CLOCK)					
Power supply drain current	ĺ				

- 1. The maximum frequency of operation is in excess of 120MHz when the SP8794 is used as a prescaler. The limitation on its maximum operating frequency is the saturating output stage. When the SP8794 is used as a controller for a 2-modulus device its internal delays do not permit operation at frequencies above 40MHz.
- 2. The device will normally be driven from a 2-modulus divider which will have fast output edges. Hence, there is normally no input slew rate problem.
- 3. TTL devices require a pull-up resistor to ensure the required minimum of 3.5V. Note that the device can interface from 10V CMOS with no additional components.
- 4. VOH will be the supply voltage that the output pull-out resistor is connected to. This voltage should not exceed 12V.
- 5. The $10k\Omega$ pulldown is the value of the input pulldown of the SP8695, with which the SP8794 can be used.
- The 4.3k Ω pulldown is the value of the input pulldown of all the SP8640 series ÷ 10/11 devices, the SP8740 & SP8745 ÷ 5/6, the SP8741 & SP8746 \div 6/7 and the SP8743 \div 8/9, with which the SP8794 can be used.

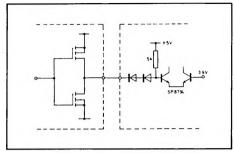


Fig. 3 CMOS and TTL compatible control I/P.

TRUTH TABLE				
Control I/P	Div. Ratio with ÷ 10/11			
0	81			
1	80			

Max input frequency to combination = 200MHz (min.). Power consumption of combination = 120mWtyp, fime available to control the \div 80/81 = 80 clock periods minus delays through dividers \cong 740ns (f_{in} = 100MHz)

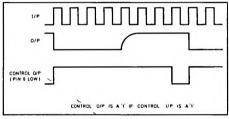


Fig. 4 SP8794 waveforms

SIGNAL SIGNAL

Fig. 6 Methods of preventing self-oscillation.

APPLICATION NOTES

The SP8794 extends the division ratio of 2-modulus counters while retaining the same 2-modulus resolution. A typical application to give a \div 80/81 function is shown in Fig. 5. In this basic form, however, the devices will self-oscillate if no input signal source is present, This may be prevented by using one of the arrangements shown in Fig. 6.

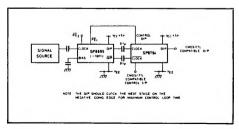


Fig. 5 SP8794 with SP8695 connected to give a low power ÷ 80/81