

SP8000 SERIES HIGH SPEED DIVIDERS

SP8790 A, B & M

EXTENDER FOR 2-MODULUS COUNTERS

The SP8790 is a divide-by-four counter designed for use with 2-modulus counters. It increases the minimum division ratio of the 2-modulus counter while retaining the same difference in division ratios. Thus a divide-by-10 or 11 with the SP8790 becomes a divide-by-40 or 41, a divide by 5 or 6 becomes a divide by 20 or 21.

The function is especially useful in low power frequency synthesisers because it can bring the output frequency of the combined 2-modulus counter and SP8790 into the region where CMOS or low power TL can control the divider. The power-saving advantages are obvious.

The device interfaces easily to the SP8690 range of divide by 10 or 11s. The control inputs are TTL and CMOS compatible and the output is a free collector which, with the addition of a pull-up resistor, interfaces to CMOS and TTL.

The SP8790 is available in three temperature grades : 0 $^\circ$ C to +70 C (SP8790B), -40 C to ; 85 C (SP8790-M) and -55 C to +125 C (SP8790A).

The SP8790 requires supplies of OV and $\pm 5V \pm 0.25V.$

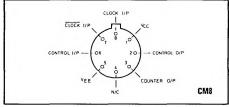


Fig. 1 Pin connections

FEATURES

- Ultra-Low Power: 40mW
- Full Military Temperature Range
- I/P and O/P Interface Direct to CMOS/TTL

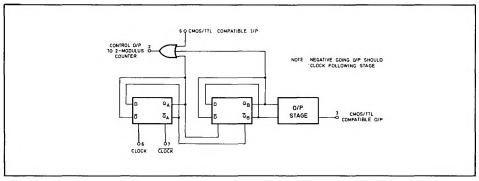


Fig. 2 Logic diagram

ABSOLUTE MAXIMUM RATINGS

ly

ELECTRICAL CHARACTERISTICS

 Test conditions (unless otherwise stated):

 Tamb:
 -55 C to -125 C (A grade)

 -40 C to -85 C (M grade)
 0 C to -70 C (B grade)

 Vcc=-5V ::
 5%

 VEE=0V
 Clock instructions with double complementary
Clock input voltage with double complementary drive to CLOCK and CLOCK=300mV to 1V p-p.

	Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions
Dynamic Toggle frequency Min toggle frequency	See note 1			MHz	
with sine-wave input			20	MHz	See note 2
Min toggle frequency with square wave input Clock to O/P delay	0			Hz	Slew rate 50V/µs
(O/P – ve going) Clock to O/P delay		14		ns	
(O/P - ve going)	1	28		ns	
Control I/P to control O/P delay (O/P–ve going)		20		ns	10kΩ pulldown on control O/P (See note 5)
Clock I/P to control O/P delay (O/P÷ve going)		10		ns	10kΩ pulldown on control 0/P (See note 5)
Control I/P to control O/P delay (O/P–ve going)		12		ns	4.3kΩ pulldown on control O/P (See note 6)
Control I/P to control O/P delay (O/P+ve going)		9		ns	4.3kΩ pulldown on control O/P (See note 6)
Clock to control O/P delay (O/P –ve going)		26		ns	10kΩ pulldown on control O/P (See note 5)
Clock to control O/P delay (O/Pve going)		12		ns	10kΩ pulldown on control O/P (See note 5)
Clock to control O/P delay (O/P-ve going)		17		ns	4.3kΩ pulldown on control O/P (See note 6)
Clock to control O/P delay (O/P—ve going)		12		ns	4.3kΩ pulldown on control O/P (See note 6)
Static Control I/P voltage level High state Low state	3.5 0		10 1.5	vv	See note 3
Output voltage level		1			
Vot Voн (See note 4)			0.4	V	Sink current - 6.0mA
Input impedance		1.6		kΩ	fin-OHz
Input vias voltage (CLOCK and CLOCK)		2.4		v	Inputs open circuit
Power supply drain current		8.0	11	mA	4

NOTES

- The maximum frequency of operation is in excess of 60MHz when the SP8790 is used as a prescaler. The limitation on this maximum frequency is the saturating O/P stage. When the SP8790 is used as a controller its internal delays do not permit operation at frequencies in excess of 40MHz.
- The device will normally be driven from a 2-modulus divider which will have fast output edges. Hence, there is normally no input slew rate problem.
- TTL devices require a pull-up resistor to ensure the required minimum of 3.5V. Note that the device can interface from 10V CMOS with no additional components.
- 4. VOH will be the supply voltage that the output pull-up resistor is connected to. This voltage should not exceed 12V
- 5. The 10kΩ pulldown is the value of the input pulldown of the SP8695 with which the SP8790 can be used.
- The 4.3kΩ pulldown is the value of the input pulldown of the SP8640 series SP8745 and SP8746 with which the SP8790 can be used.

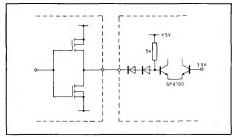


Fig. 3 CMOS and TTL compatible control input

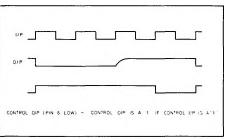


Fig. 4 SP8790 waveforms

OPERATING NOTES

The SP8790 extends the division ratio of 2-modulus counters while retaining the same 2-modulus resolution. A typical application to give a $\div 40/41$ function is shown in Fig. 5. In this basic form, however, the devices will self-oscillate if no input signal source is present. This may be prevented by using one of the arrangements shown in Fig. 6.

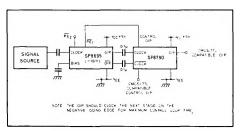


Fig. 5 SP8790 with SP8695 connected to give a 40/4

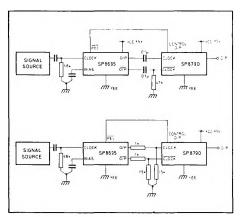


Fig. 6 Methods of preventing self-oscillation

TRUTH TABLE				
Control Input	Div. Ratio With ÷10/11			
0	41			
1	40			

Max input frequency to combination=200MHz (min.). Power consumption of combination=120mWtyp. Time available to control the $\div 40/41 = (40 \ clock \ periods \ minus \ delays through the dividers) - 340ns (f_{in}=100MHz).$