SP8000 SERIES
 HIGH SPEED DIVIDERS

SP8650A, B \& M $\mathbf{6 0 0 \mathrm { MHz } \div 1 6}$
 SP8651A, B \& M 500MHz $^{1} 16$
 SP8652A, B \& M 400МНz $\div 16$

The SP8650 series of UHF $\div 16$ counters are fixed ratio synchronous emitter coupled logic counters with, in the case of the SP8650, a maximum operating frequency in excess of 600 MHz . All three devices operate up to their maximum specified operating frequencies over temperature ranges of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (' A ' grade), $0^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$ (' B^{\prime} grade) and $-40^{\circ} \mathrm{C}$ to $-85^{\circ} \mathrm{C}$ (' M ' grade). The input is normally capacitively coupled to the signal source but the circuits can be DC driven if required. The inputs can be either single driven relative to the on-chip reference voltage or differentially driven.
There are two complementary emitter follower outputs.

FEATURES

Low Power - Typically 250mW ECL II \& ECL III Output Compatability

- Easy Operation From UHF Signal Source

APPLICATIONS

- Prescaling for UHF Synthesisers

Instrumentation

Fig. 1 Pin connections

QUICK REFERENCE DATA

$$
\begin{aligned}
\text { Power Supplies } V C C & =O V \\
V_{E E} & =-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}
\end{aligned}
$$

Temperature Range ' A ' grade $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{\prime} \mathrm{B}$ ' grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
' M ' grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Amplitude Range 400 mV to
$800 \mathrm{mVp}-\mathrm{p}$

- Output Voltage Swing 800 mV typ. p-p

Fig. 2 Functional diagram

SP8650/1/2

ELECTRICAL CHARACTERISTICS

```
Test Conditions (unless otherwise stated)
    \(T_{\text {amb }}=-55^{\circ} C^{\prime}\) to \(-125^{\circ} \mathrm{C}\) (' \(A^{\prime}\) grade)
                    \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) ('B' grade)
                        \(-40^{\circ} \mathrm{C}\) to \(-85^{\circ} \mathrm{C}\) (' \(\mathrm{M}^{\prime}\) grade)
    Supply Voltage
        \(\mathrm{Vcc}=\mathrm{OV}\)
        \(V_{E E}=-5.2 \mathrm{~V} \pm 0.25 \mathrm{~V}\)
    Output load \(=500 \Omega\) in parallel with approx. 3 pF
```

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} \& \multirow[b]{2}{*}{Type} \& \multicolumn{3}{|c|}{Value} \& \multirow[b]{2}{*}{Units} \& \multirow[b]{2}{*}{Conditions} \\
\hline \& \& Min. \& Typ. \& Max. \& \& \\
\hline Max. Toggle frequency \& \[
\begin{aligned}
\& \text { SP8650 } \\
\& \text { SP8651 } \\
\& \text { SP8652 }
\end{aligned}
\] \& \[
\begin{aligned}
\& 600 \\
\& 500 \\
\& 400
\end{aligned}
\] \& \& \& \begin{tabular}{l}
HMz MHz \\
MHz
\end{tabular} \& \[
\begin{array}{|l}
\text { Test circuit as in fig. } 2 \\
V_{I N}=400 \text { to } 800 \mathrm{mV} p-\mathrm{p} \\
V_{I N}=400 \text { to } 800 \mathrm{mV} p-\mathrm{p} \\
V_{I N}=400 \text { to } 800 \mathrm{mV} p-\mathrm{p}
\end{array}
\] \\
\hline Min. toggle frequency for correct operation with a sinewave input Min. slew rate for square wave input to guarantee correct \& All \& \& \& 40 \& MHz

V / Hs \& VIN $=400$ to 800 mV p-p

\hline operation to OHz \& All \& \& \& 100 \& $\mathrm{V} / \mu \mathrm{s}$ \&

\hline Input reference voltage \& All \& \& 2.6 \& \& V \&

\hline Output voltage swing (dynamic) \& All \& 500 \& 800 \& \& mV \& p-p

\hline Output voltage (static) high state \& All \& -8.95 \& \& . 615 \& V \&

\hline Low state \& All \& -1.83 \& \& -1.435 \& V \&

\hline Power supply drain current \& All \& \& 45 \& 60 \& mA \&

\hline
\end{tabular}

Fig. 3 Toggle frequency test circuit

Toggle Frequency Test Circuit

1. All leads are kept short to minimise stray capacitance and induction.
2. Resistors and capacitors are non-inductive UHF types.
3. Device is tested in a $\mathbf{1 4}$ lead Augat socket type No. 314-AGGA-R

Fig. 4 SP8650 to ECL 10 K interface

ABSOLUTE MAXIMUM RATINGS

Power supply voltage /VCC - VEE/ 8 volts Inpui voltaye ViNac $\quad 2.5 \mathrm{Vp}$-p Output source curr lout 10 mA Storage temperature range $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating junction temperature $150^{\circ} \mathrm{C}$ max.

OPERATING NOTE

Normal UHF layout techniques should be used if the SP8650 series of dividers are to operate satisfactorily. If the positive supply is used as the earth connection, noise immunity is improved and the risk of damage due to inadvertently shorting the output emitter followers to the negative rail is reduced.
The circuit is normally capacitively coupled to the signal source. In the absence of an input signal the circuit will self-oscillate. This can be prevented by connecting a $10 \mathrm{~K} \Omega$ resistor between one of the inputs and the negative rail.

The device will also miscount if the input transitions are slow - a slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$ or greater is necessary for low frequency operation.

The outputs interface directly to ECL II or to ECL 10K with a potential divider (see Fig. 4).

A typical application of the SP8650 series devices would be in the divider chain of a synthesiser operating in the military frequency range 225 MHz to 512 MHz . A binary division rate is optimum where power is at a premium and so the SP8650 series would normally be used in low power applications.

Fig. 5 A low power synthesiser loop

