
SN75ALS056, SN75ALS057 TRAPEZOIDAL-WAVEFORM INTERFACE BUS TRANSCEIVERS

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

- Suitable for IEEE Standard 896 Applications†
- SN75ALS056 is an Octal Transceiver
- SN75ALS057 is a Quad Transceiver
- **High-Speed Advanced Low-Power Schottky** (ALS) Circuitry
- **Low Power Dissipation:** 52.5 mW/Channel Max
- **High-Impedance pnp Inputs**
- Logic-Level 1-V Bus Swing Reduces Power Consumption
- **Trapezoidal Bus Output Waveform Reduces Noise Coupling to Adjacent Lines**
- Power-Up/Power-Down Protection (Glitch Free)
- **Open-Collector Driver Outputs Allow Wired-OR Connections**
- Designed to Be a Faster, Lower-Power Functional Equivalent of National DS3896, **DS3897**

description

SN75ALS056 is an eight-channel, monolithic, high-speed, advanced low-power Schottky (ALS) device designed for two-way data communication in a densely backplane. The SN75ALS057 is a four-channel version with independent driver-input (Dn) and receiver-output (Rn) pins and a separate driver disable for each driver (En).

(TOP VIEW) 20 🛮 B1 D1 Γ 19 E1 R1 🛮 2 D2 [] 3 18 B2 R2 [] 4 17 ∏ E2 16 GND V_{CC} 🛭 5 D3 [6 15 B3 14**∏** E3 R3 **∏** 7 13 🛮 B4

12 E4

RE

D4 | 8

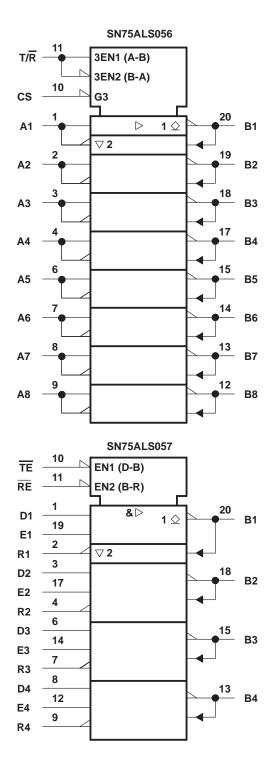
R4 🛮 9

TE []

SN75ALS057 . . . DW OR N PACKAGE

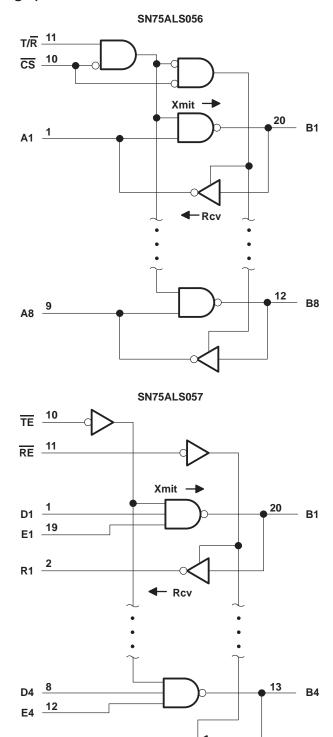
These transceivers feature open-collector driver outputs with series Schottky diodes to reduce capacitive loading to the bus. By using a 2-V pullup termination on the bus, the output signal swing is approximately 1 V, which reduces the power necessary to drive the bus load capacitance. The driver outputs generate trapezoidal waveforms that reduce crosstalk between channels. The drivers are capable of driving an equivalent dc load as low as 18.5 Ω . The receivers have internal low-pass filters to further improve noise immunity.

The SN75ALS056 and SN75ALS057 are characterized for operation from 0°C to 70°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

† The transceivers are suitable for IEEE Standard 896 applications to the extent of the operating conditions and characteristics specified in this data sheet.


logic symbol†

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

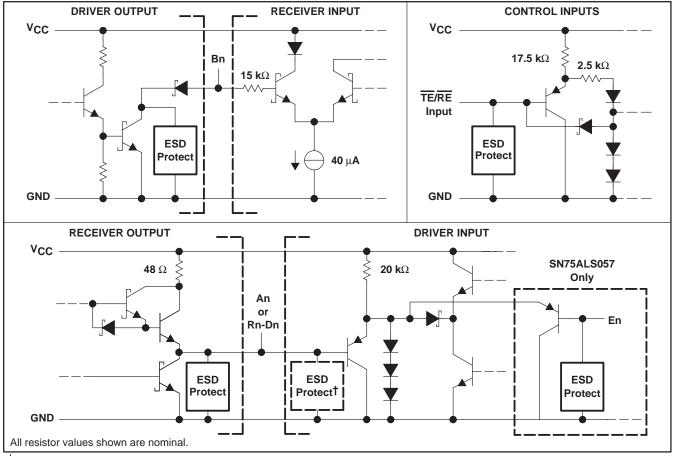
[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Function Tables

SN75ALS056 TRANSMIT/RECEIVE

CONT	ROLS	CHANNELS			
CS	T/R	$A \leftrightarrow B$			
L	Н	T(A	B)		
L	L	R(B A)			
Н	Χ)		

SN75ALS057 TRANSMIT/RECEIVE


C	ONTROL	.S	CHANNELS				
TE	RE	En	D B	B R			
L	L	L	D	R			
L	L	Н	Т	R			
L	Н	L	D	D			
L	Н	Н	Т	D			
Н	L	Χ	D	R			
Н	Н	Χ	D	D			

H = high level, L = low level, R = receive, T = transmit,

D = disable, X = irrelevant

Direction of data transmission is from An to Bn for the SN75ALS056 and from Dn to Bn for the SN75ALS057. Direction of data reception is from Bn to An for the SN75ALS056 and from Bn to Rn for the SN75ALS057. Data transfer is inverting in both directions.

schematics of inputs and outputs

† Additional ESD protection is on the SN75ALS057, which has separate receiver-output and driver-input pins.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)‡

Supply voltage, V _{CC} (see Note 1) 6 V	Supply voltage, V _{CC} (see Note 1)
Control input voltage, V _I 5.5 V	
Driver input voltage, V _I 5.5 V	Driver input voltage, V _I
Driver output voltage, VO	Driver output voltage, VO
Receiver input voltage, V _I	Receiver input voltage, V _I
Receiver output voltage, V _O 5.5 V	Receiver output voltage, VO
Continuous total power dissipation	Continuous total power dissipatio
Storage temperature range, T _{stg} 65°C to 150°C	Storage temperature range, T _{sta}
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package 260 °C	Lead temperature 1,6 mm (1/16 in

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Voltage values are with respect to network ground terminal.

SN75ALS056, SN75ALS057 TRAPEZOIDAL-WAVEFORM INTERFACE BUS TRANSCEIVERS

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
DW	1025 mW	8.2 mW/°C	656 mW	_
N	1150 mW	9.2 mW/°C	736 mW	_

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level driver and control input voltage, VIH	2			V
Low-level driver and control input voltage, V _{IL}			0.8	V
Bus termination voltage	1.9		2.1	V
Operating free-air temperature, T _A	0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			TTOT CONDITIONS!	SN	75ALS0	56	
	PARAMETER		TEST CONDITIONS [†]	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage at An, T/R, or CS		I _I = -18 mA			-1.5	V
VIT	Receiver input threshold v	oltage at Bn		1.405		1.69	V
Vон	High-level output voltage	at An	Bn at 1.2 V, CS at 0.8 V, T/ R at 0.8V, I _{OH} = – 400 μA	2.4			V
	An	Bn at 2 V , CS at 0.8 V, T/R at 0.8 V, I _{OL} = 16 mA			0.5		
VOL	V _{OL} Low-level output voltage	Low-level output voltage	An at 2 V, \overline{CS} at 0.8 V, T/\overline{R} at 2 V, $V_L = 2$ V, $R_L = 18.5 \Omega$, See Figure 1	0.75		1.2	V
		An, T/R or CS	$V_I = V_{CC}$			40	
I _{IH}	High-level input current	Bn	V _I = 2 V, V _{CC} <u>=</u> 0 or 5.25 V, An at 0.8 V, T/R at 0.8 V			100	μΑ
I _{IL}	Low level input current at	An, T/R, or CS	V _I = 0.4 V			-400	μΑ
los	Short-circuit output current at An		An at 0, Bn at 1.2 V, CS at 0.8 V, T/R at 0.8 V	-40		-120	mA
ICC	Supply current					75	mA
C _{O(B)}	Driver output capacitance				4.5		pF

[†] Typical values are at V_{CC} = 5 V, T_A = 25°C.

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	DADAMETED		TEST COMPLICATE	SN	75ALS0	57	UNIT
	PARAMETER		TEST CONDITIONS	MIN	TYP†	MAX	UNII
VIK	Input clamp voltage at Dn, En, T	E, or RE	I _I = -18 mA			-1.5	V
VIT	Receiver input threshold voltage	at Bn		1.41		1.69	V
Vон	High-level output voltage at Rn		Bn at 1.2 V, RE at 0.8 V, I _{OH} = -400 μA	2.4			V
	Rn	Bn at 2 V, RE at 0.8 V, I _{OL} = 16 mA			0.5		
VOL	V _{OL} Low-level output voltage		$\frac{Dn}{TE}$ at 2 V, En at 2 V, $\frac{TE}{RL}$ at 0.8 V, V _L = 2 V, R _L = 18.5 Ω, See Figure 1	0.75		1.2	V
		Dn, En <u>,</u> TE, or RE	VI = VCC			40	
lін	High-level input current	Bn	V _I = 2 V, V _{CC} = 0 or 5.25 V, <u>Dn</u> at 0.8 V, En at 0.8 V, <u>TE</u> at 0.8 V			100	μΑ
Iμ	Low-level input current at Dn, En	, TE, or RE	V _I = 0.4 V			-400	μΑ
los	Short-circuit output current at Rn		Rn at 0, Bn at 1.2 V, RE at 0.8 V	-40		-120	mA
Icc	Supply current					40	mA
C _{O(B)}	Driver output capacitance				4.5		pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TO	TEST CONDITIONS	SN75ALS056 DRIVER			UNIT
		(INPUT)	(OUTPUT)		MIN	TYP [†]	MAX	
tPLH1	Propagation delay time, low-to-high-level output	<u>cs</u>	Bn	An and T/R at 2 V, V _L = 2 V,			24	20
tPHL1	Propagation delay time, high-to-low-level output	CS	DII	R _L 1 = 18 Ω , C _L = 30 pF, R _L 2 not connected, See Figure 2			20	ns
^t PLH2	Propagation delay time, low-to-high-level output	A.D.	Do	$\overline{\text{CS}}$ at 0.8 V, $\overline{\text{T/R}}$ at 2 V, $V_L = 2 \text{ V}$, $R_L 1 = 18 \Omega_{\text{J}}$,			19	20
tPHL2	Propagation delay time high-to-low-level output	An	Bn	R_L2 not connected, $C_L = 30$ pF, See Figure 2,			18	ns
tPLH3	Propagation delay time, low-to-high-level output	<u>-</u> -	Bn	$\begin{split} &V_{I(An)}=5\text{ V, CS at }0.8\text{ V,}\\ &R_{L}1=18\ \Omega,\text{ C}_{L}=30\text{ pF,}\\ &R_{L}2\text{ not connected, V}_{L}=2\text{ V,}\\ &\text{See Figure }3, \end{split}$			25	
t _{PHL3}	Propagation delay time, high-to-low-level output	T/R	БП				35	ns
tTLH	Transition time, low-to-high-level output	An	Bn	CS at 0.8 V, T/R at 2 V, VL = 2 V, CL = 30 pF,	1	3	11	ns
tTHL	Transition time, high-to-low-level output	All	ы	$R_L 1 = 18 \Omega$, $R_L 2$ not connected, See Figure 2	1	3	6	115

[†] Typical values are at V_{CC} = 5 V, T_A = 25°C

SN75ALS056, SN75ALS057 TRAPEZOIDAL-WAVEFORM INTERFACE BUS TRANSCEIVERS

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	FROM	TO (OUTPUT)	TEST CONDITIONS	SN75AI RECEI		UNIT	
		(INPUT)	(OUTPUT)		MIN	MAX		
^t PLH4	Propagation delay time, low-to-high-level output	Bn	An	$\overline{\text{CS}}$ at 0.8 V, T/ $\overline{\text{R}}$ at 0.8 V, R _L 1 = 390 Ω ,		18		
^t PHL4	Propagation delay time, high-to-low-level output	ы	All	$R_L 2 = 1.6 \text{ k}\Omega$, $C_L = 30 \text{ pF}$, See Figure 4		18	ns	
^t PLZ1	Output disable time from low level	T/R	An	$\overline{\text{CS}}$ at 0.8 V, V _{I(Bn)} = 2 V, V _L = 5 V, R _L 1 = 390 Ω , R _L 2 not connected, C _L = 15 pF, See Figure 3		20	ns	
^t PZL1	Output enable time to low level	T/R	An	$\overline{\text{CS}}$ at 0.8 V, V _I (Bn) = 2 V, V _L = 5 V, R _L 1 = 390 Ω, R _L 2 = 1.6 kΩ, C _L = 30 pF, See Figure 3		40	ns	
^t PHZ1	Output disable time from high level	T/R	An	$\overline{\text{CS}}$ at 0.8 V, V _I (Bn) = 0, V _L = 0, R _L 1 = 390 Ω , R _L 2 not connected, C _L = 15 pF, See Figure 3		17	ns	
^t PZH1	Output enable time to high level	T/R	An	$\overline{\text{CS}}$ at 0.8 V, VI _(Bn) = 0, V _L = 0, R _L 1 not connected, R _L 2 = 1.6 k Ω , C _L = 30 pF, See Figure 3		15	ns	
t _{PLZ2}	Output disable time from low level	cs	An	Bn at 2 V, T/\overline{R} at 0.8 V, $C_L = 5$ pF, $V_L = 5$ V, $R_L 1 = 390 \Omega$, $R_L 2$ not connected, See Figure 5		18	ns	
tPZL2	Output enable time to low level	<u>cs</u>	An	Bn at 2 V, T/\overline{R} at 0.8 V, $C_L = 30$ pF, $V_L = 5$ V, $R_L 1 = 390$ Ω, $R_L 2 = 1.6$ kΩ, See Figure 5		15	ns	
^t PHZ2	Output disable time from high level	cs	An	Bn at 0.8 V, T/\overline{R} at 0.8 V, $C_L = 5$ pF, $V_L = 0$, $R_L 1 = 390 \Omega$, $R_L 2$ not connected, See Figure 5		8	ns	
^t PZH2	Output enable time to high level	CS	An	Bn at 0.8 V, T/\overline{R} at 0.8 V, $C_L = 30$ pF, $V_L = 0$, $R_L 1$ not connected, $R_L 2 = 1.6$ k Ω , See Figure 5		17	ns	
t _{w(NR)}	Receiver noise rejection pulse duration	Bn	An	$\overline{\text{CS}}$ at 0.8 V, T/ $\overline{\text{R}}$ at 0.8 V, R _L 1 = 390 Ω, R _L 2 = 1.6 kΩ, C _L = 30 pF, V _L = 5 V, See Figure 6	3		ns	

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		FROM	TO	TEST CONDITIONS	SN	UNIT		
		(INPUT)	(OUTPUT)		MIN	TYP [†]	MAX	
tPLH1	Propagation delay time, low-to-high-level output		TE Bn	Dn, En, \overline{RE} at 2 V, $V_L = 2$ V, $R_L = 2$ not connected, $R_L = 18 \Omega$, See Figure 2, $C_L = 30$ pF			24	no.
tPHL1	Propagation delay time, high-to-low-level output	15					20	ns
tPLH2	Propagation delay time, low-to-high-level output	Dn or En	Bn	$\overline{\text{TE}}$ at 0.8 V, $\overline{\text{RE}}$ at 2 V, V _I = 2 V, R _I 1 = 18 Ω,			19	
tPHL2	Propagation delay time, high-to-low-level output	DITOLEI	Bn	R _L 2 not connected,C _L = 30 pF, See Figure 2			18	ns
tTLH	Transition time, low-to-high-level output	Dn or En	En Bn	\overline{RE} at 2 V, V _L = 2 V, \overline{TE} at 0.8 V, R _L 1 = 18 Ω ,, R _L 2 not connected, C _L = 30 pF, See Figure 2	1	3	11	no.
tTHL	Transition time, high-to-low-level output	ווטו בוו			1	3	6	ns

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

	PARAMETER		TO (OUTPUT)	TEST CONDITIONS		SN75ALS057 RECEIVER		
		(INPUT)	(001-01)		MIN	MAX		
t _{PLH4}	Propagation delay time, low-to-high-level output	Bn	Rn	RE at 0.8 V, TE at 2 V, $V_L = 5 \text{ V}$,		18	ns	
^t PHL4	Propagation delay time, high-to-low-level output	ы	KII	RL1 = 390 Ω ,, RL2 = 1.6 k Ω ,, CL = 30 pF, See Figure 4		18	119	
tPLZ2	Output disable time from low level	RE	Rn	Bn at 2 V, $\overline{\text{TE}}$ at 2 V, $V_L = 5$ V, $C_L = 5$ pF, $R_L 1 = 390 \Omega$, $R_L 2$ not connected, See Figure 5		18	ns	
tPZL2	Output enable time to low level	RE	Rn	Bn at 2 V, $\overline{\text{TE}}$ at 2 V, V_L = 5 V, C_L = 30 pF, R_L 1 = 390 Ω , R_L 2 = 1.6 k Ω , See Figure 5		15	ns	
^t PHZ2	Output disable time from high level	RE	Rn	Bn at 0.8 V, $\overline{\text{TE}}$ at 2 V, $V_L = 0$, $C_L = 5 \text{ pF}$, $R_L = 390 \Omega$, $R_L = 390 \Omega$, Respectively.		17	ns	
^t PZH2	Output enable time to high level	RE	Rn	Bn at 0.8 V, $\overline{\text{TE}}$ at 2 V, $V_L = 0$, $C_L = 30$ pF, $R_L 1$ not connected, $R_L 2 = 1.6$ k Ω , See Figure 5		17	ns	
tw(NR)	Receiver noise rejection pulse duration	Bn	Rn	TE at 2 V, RE at 0.8 V, $V_L = 0$, $R_L 1 = 390 \Omega$, $R_L 2 = 1.6 k\Omega$, $C_L = 30 pF$, See Figure 6	3		ns	

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN75AL DRIVER RECEI	PLUS	UNIT
					MIN	MAX	
tPLH6	Propagation delay time, low-to-high-level output	Dn	Rn	$\overline{\text{RE}}$ at 0.8 V, $\overline{\text{TE}}$ at 0.8 V, $R_L 1 = 390 \Omega$,		40	ne
tPHL6	Propagation delay time, high-to-low-level output	Dii	Kii	$R_L 2 = 1.6 \text{ k}\Omega$, $C_L = 30 \text{ pF}$, See Figure 7	40		ns

PARAMETER MEASUREMENT INFORMATION

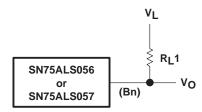
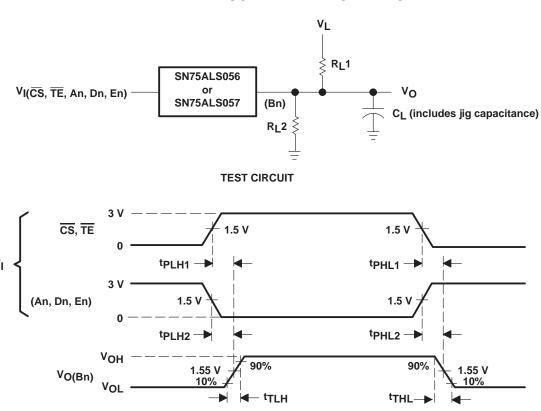
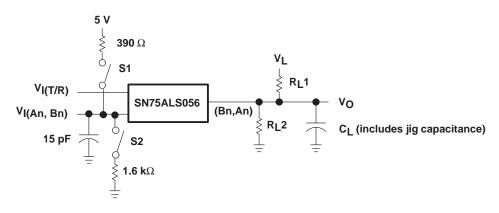
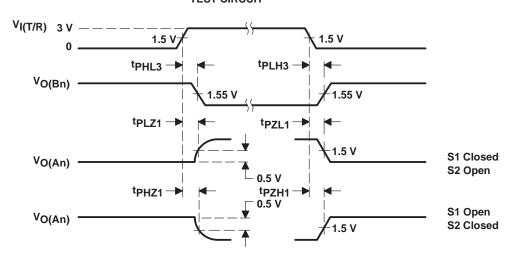



Figure 1. Driver Low-Level-Output-Voltage Test Circuit

PARAMETER MEASUREMENT INFORMATION

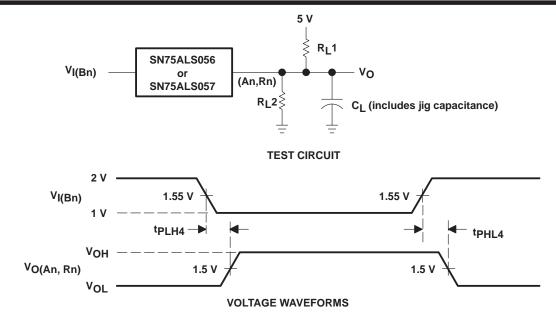


NOTE A: $t_r = t_f \le 5$ ns from 10% to 90%


Figure 2. Driver Test Circuit and Voltage Waveforms

VOLTAGE WAVEFORMS

PARAMETER MEASUREMENT INFORMATION


TEST CIRCUIT

VOLTAGE WAVEFORMS

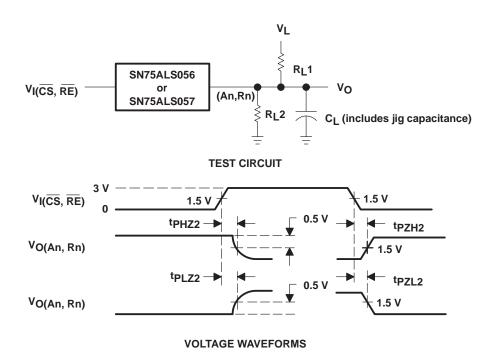
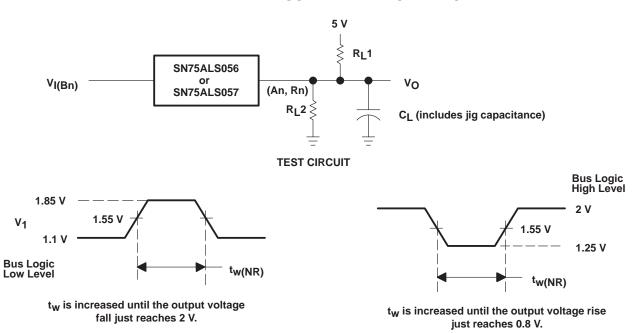

NOTE A: $t_r = t_f \le 5$ ns from 10% to 90%

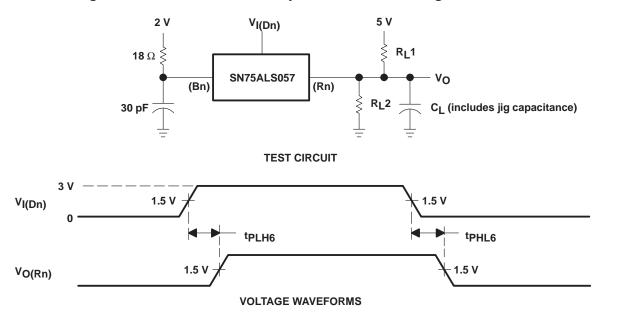
Figure 3. Propagation Delay From T/R to An or Bn Test Circuit and Voltage Waveforms

NOTE A: $t_r = t_f \le 5$ ns from 10% to 90%


Figure 4. Receiver Test Circuit and Voltage Waveforms

NOTE A: $t_f = t_f \le 5$ ns from 10% to 90%

Figure 5. Propagation Delay From CS to An or RE to Rn Test Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTE A: $t_r = t_f \le 5$ ns from 10% to 90%

Figure 6. Receiver Noise-Immunity Test Circuit and Voltage Waveforms

NOTE A: $t_f = t_f \le 5$ ns from 10% to 90%

Figure 7. Driver Plus Receiver Delay-Times Test Circuits and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN75ALS056DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS056DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS056DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS056DWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS056DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS056N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS056NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS057DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS057DWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS057DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS057DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS057DWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS057DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS057N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS057NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

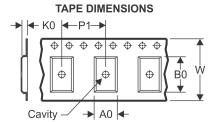
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

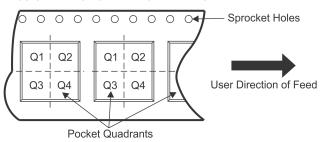
18-Sep-2008

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

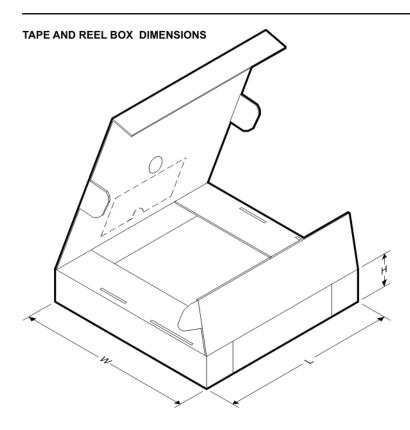

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jan-2013


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75ALS056DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN75ALS057DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

www.ti.com 3-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75ALS056DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN75ALS057DWR	SOIC	DW	20	2000	367.0	367.0	45.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

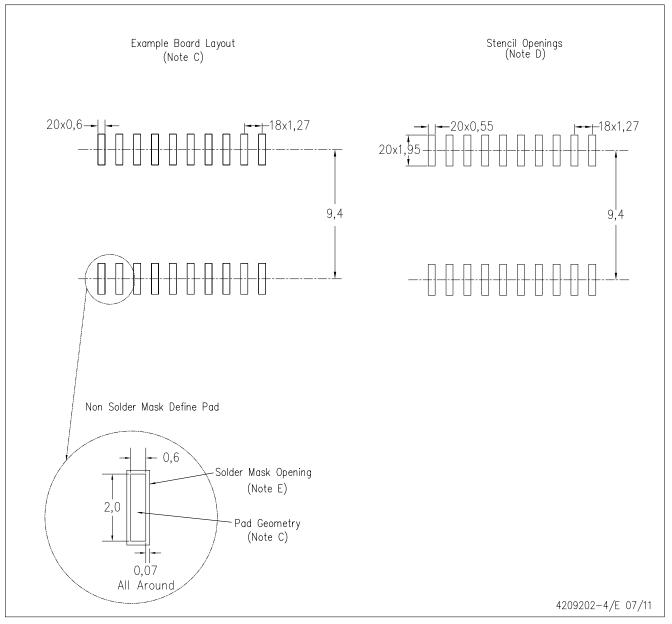
16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>