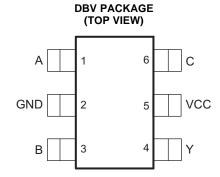


www.ti.com SCES846 – JANUARY 2013

## SINGLE 3-INPUT POSITIVE OR-AND GATE

Check for Samples: SN74LVC1G3208-EP

#### **FEATURES**


- Supports 5-V V<sub>CC</sub> Operation
- Inputs Accept Voltages to 5.5 V
- Max t<sub>pd</sub> of 5 ns at 3.3 V
- Low Power Consumption, 10-μA Max I<sub>CC</sub>
- ±24-mA Output Drive at 3.3 V
- Input Hysteresis Allows Slow Input Transition and Better Switching Noise Immunity at the Input

 $(V_{hvs} = 250 \text{ mV Typ at } 3.3 \text{ V})$ 

- Can Be Used in Three Combinations:
  - OR-AND Gate
  - OR Gate
  - AND Gate
- I<sub>off</sub> Supports Partial-Power-Down Mode Operation

# SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- Controlled Baseline
- · One Assembly and Test Site
- One Fabrication Site
- Available in Military (-55°C to 125°C)
  Temperature Ranges (1)
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability



(1) Custom temperature ranges available

#### DESCRIPTION/ORDERING INFORMATION

This device is designed for 1.65-V to 5.5-V  $V_{CC}$  operation.

The SN74LVC1G3208 is a single 3-input positive OR-AND gate. It performs the Boolean function  $Y = (A + B) \cdot C$  in positive logic.

By tying one input to GND or  $V_{CC}$ , the SN74LVC1G3208 offers two more functions. When C is tied to  $V_{CC}$ , this device performs as a 2-input OR gate (Y = A + B). When A is tied to GND, the device works as a 2-input AND gate (Y = B  $\cdot$  C). This device also works as a 2-input AND gate when B is tied to GND (Y = A  $\cdot$  C).

This device is fully specified for partial-power-down applications using  $I_{off}$ . The  $I_{off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

#### Table 1. ORDERING INFORMATION(1)

|   | T <sub>A</sub> | PACKAGE                          |  | PACKAGE ORDERABLE PART NUMBER |       | VID NUMBER     |
|---|----------------|----------------------------------|--|-------------------------------|-------|----------------|
| - | -55°C to 125°C | C SOT (SOT-23) – DBV Reel of 250 |  | 74LVC1G3208MDBVTEP            | CDD5M | V62/13605-01XE |

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



### **FUNCTION TABLE**(1)

|   | INPUTS |   |   |  |  |
|---|--------|---|---|--|--|
| Α | В      | С | Υ |  |  |
| Н | Χ      | Н | Н |  |  |
| X | Н      | Н | Н |  |  |
| X | X      | L | L |  |  |
| L | L      | Н | L |  |  |

(1) X = Valid H or L

## **LOGIC DIAGRAM (POSITIVE LOGIC)**



#### **FUNCTION SELECTION TABLE**

| LOGIC FUNCTION        | FIGURE |
|-----------------------|--------|
| 2-Input AND Gate      | 1      |
| 2-Input OR Gate       | 2      |
| $Y = (A + B) \cdot C$ | 3      |

## **LOGIC CONFIGURATIONS**

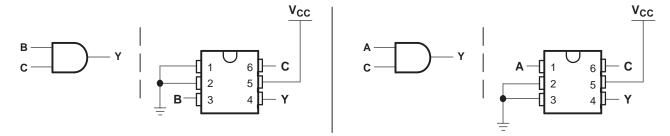



Figure 1. 2-Input AND Gate

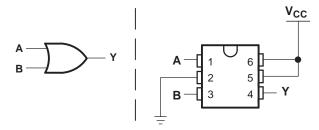



Figure 2. 2-Input OR Gate

Product Folder Links: SN74LVC1G3208-EP

Submit Documentation Feedback

SCES846 - JANUARY 2013 www.ti.com



Figure 3.  $Y = (A + B) \cdot C$ 

## Absolute Maximum Ratings<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                  |                                                    |                    | MIN                   | MAX         | UNIT |
|------------------|----------------------------------------------------|--------------------|-----------------------|-------------|------|
| $V_{CC}$         | Supply voltage range                               |                    | -0.5                  | 6.5         | V    |
| VI               | nput voltage range <sup>(2)</sup>                  |                    | -0.5                  | 6.5         | V    |
| Vo               | Voltage range applied to any output in the high-im | -0.5               | 6.5                   | V           |      |
| Vo               | Voltage range applied to any output in the high or | -0.5               | V <sub>CC</sub> + 0.5 | V           |      |
| I <sub>IK</sub>  | Input clamp current                                | V <sub>1</sub> < 0 |                       | <b>-</b> 50 | mA   |
| I <sub>OK</sub>  | Output clamp current                               | V <sub>O</sub> < 0 |                       | <b>-</b> 50 | mA   |
| Io               | Continuous output current                          |                    |                       | ±50         | mA   |
|                  | Continuous current through V <sub>CC</sub> or GND  |                    | ±100                  | mA          |      |
| T <sub>stg</sub> | Storage temperature range                          |                    | -65                   | 150         | °C   |

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- The value of VCC is provided in the recommended operating conditions table.

#### THERMAL INFORMATION

|                         |                                                           | SN74LVC1G3208 |       |
|-------------------------|-----------------------------------------------------------|---------------|-------|
|                         | THERMAL METRIC <sup>(1)</sup>                             | DBV           | UNITS |
|                         |                                                           | 6 PINS        |       |
| $\theta_{JA}$           | Junction-to-ambient thermal resistance (2)                | 207           |       |
| $\theta_{JCtop}$        | Junction-to-case (top) thermal resistance (3)             | 148.1         |       |
| $\theta_{JB}$           | Junction-to-board thermal resistance <sup>(4)</sup>       | 50.6          | °C/W  |
| ΨЈТ                     | Junction-to-top characterization parameter <sup>(5)</sup> | 41.2          | C/VV  |
| ΨЈВ                     | Junction-to-board characterization parameter (6)          | 50.1          |       |
| $\theta_{\text{JCbot}}$ | Junction-to-case (bottom) thermal resistance (7)          | N/A           |       |

- For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- The junction-to-top characterization parameter,  $\psi_{JT}$ , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining  $\theta_{JA}$ , using a procedure described in JESD51-2a (sections 6 and 7).
- The junction-to-board characterization parameter,  $\psi_{JB}$ , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining  $\theta_{JA}$  , using a procedure described in JESD51-2a (sections 6 and 7).
- The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

Copyright © 2013, Texas Instruments Incorporated

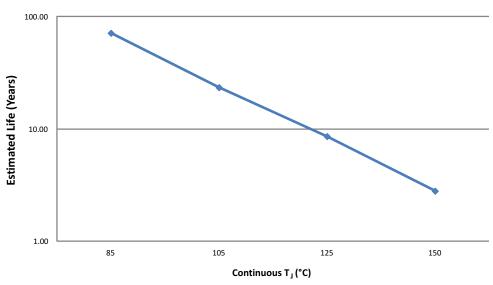


SCES846 – JANUARY 2013 www.ti.com

## Recommended Operating Conditions (1)

|                |                                    |                                                                              | MIN                    | MAX                    | UNIT |  |
|----------------|------------------------------------|------------------------------------------------------------------------------|------------------------|------------------------|------|--|
| \/             | Cumply yeltone                     | Operating                                                                    | 1.65                   | 5.5                    | V    |  |
| $V_{CC}$       | Supply voltage                     | Data retention only                                                          | 1.5                    | 1.5                    |      |  |
|                |                                    | V <sub>CC</sub> = 1.65 V to 1.95 V                                           | 0.65 × V <sub>CC</sub> |                        |      |  |
| .,             | High level innertications          | $V_{CC}$ = 2.3 V to 2.7 V                                                    | 1.7                    |                        | V    |  |
| $V_{IH}$       | High-level input voltage           | V <sub>CC</sub> = 3 V to 3.6 V                                               | 2                      |                        | V    |  |
|                |                                    | V <sub>CC</sub> = 4.5 V to 5.5 V                                             | 0.7 × V <sub>CC</sub>  |                        |      |  |
|                |                                    | V <sub>CC</sub> = 1.65 V to 1.95 V                                           |                        | 0.35 × V <sub>CC</sub> |      |  |
| .,             | Lave lavel inner treate an         | $V_{CC}$ = 2.3 V to 2.7 V                                                    |                        | 0.7                    |      |  |
| $V_{IL}$       | Low-level input voltage            | V <sub>CC</sub> = 3 V to 3.6 V                                               |                        | 0.8                    | V    |  |
|                |                                    | V <sub>CC</sub> = 4.5 V to 5.5 V                                             |                        | 0.3 × V <sub>CC</sub>  |      |  |
| VI             | Input voltage                      |                                                                              | 0                      | 5.5                    | V    |  |
| Vo             | Output voltage                     |                                                                              | 0                      | $V_{CC}$               | V    |  |
|                |                                    | V <sub>CC</sub> = 1.65 V                                                     |                        | -4                     |      |  |
|                |                                    | V <sub>CC</sub> = 2.3 V                                                      |                        | -8                     | mA   |  |
| $I_{OH}$       | High-level output current          | V <sub>CC</sub> = 3 V                                                        |                        | -16                    |      |  |
|                |                                    |                                                                              |                        | -24                    |      |  |
|                |                                    | V <sub>CC</sub> = 4.5 V                                                      |                        | -32                    |      |  |
|                |                                    | V <sub>CC</sub> = 1.65 V                                                     |                        | 4                      |      |  |
|                |                                    | V <sub>CC</sub> = 2.3 V                                                      |                        | 8                      |      |  |
| $I_{OL}$       | Low-level output current           | V <sub>CC</sub> = 3 V                                                        |                        | 16                     | mA   |  |
|                |                                    |                                                                              |                        | 24                     |      |  |
|                |                                    | V <sub>CC</sub> = 4.5 V                                                      |                        | 32                     |      |  |
|                |                                    | $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$ |                        | 20                     |      |  |
| Δt/Δν          | Input transition rise or fall rate | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                   |                        | 10                     |      |  |
|                |                                    | $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$                                     |                        | 5                      | 5    |  |
| T <sub>A</sub> | Operating free-air temperature     |                                                                              | -55                    | 125                    | °C   |  |
|                |                                    |                                                                              |                        |                        |      |  |

<sup>(1)</sup> All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.


www.ti.com SCES846 - JANUARY 2013

### **Electrical Characteristics**

over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                        | TEST CONDITIONS                                                         | V <sub>cc</sub> | MIN TYP(1)            | MAX  | UNIT |  |
|----------------------------------|-------------------------------------------------------------------------|-----------------|-----------------------|------|------|--|
|                                  | I <sub>OH</sub> = -100 μA                                               | 1.65 V to 5.5 V | V <sub>CC</sub> - 0.1 |      |      |  |
|                                  | $I_{OH} = -4 \text{ mA}$                                                | 1.65 V          | 1.2                   |      |      |  |
| .,                               | $I_{OH} = -8 \text{ mA}$                                                | 2.3 V           | 1.9                   |      |      |  |
| $V_{OH}$                         | I <sub>OH</sub> = -16 mA                                                | 0.1/            | 2.4                   |      | V    |  |
|                                  | I <sub>OH</sub> = -24 mA                                                | 3 V             | 2.3                   |      |      |  |
|                                  | I <sub>OH</sub> = -32 mA                                                | 4.5 V           | 3.8                   |      |      |  |
|                                  | I <sub>OL</sub> = 100 μA                                                | 1.65 V to 5.5 V |                       | 0.11 |      |  |
|                                  | I <sub>OL</sub> = 4 mA                                                  | 1.65 V          |                       | 0.52 | 52   |  |
|                                  | I <sub>OL</sub> = 8 mA                                                  | 2.3 V           |                       | 0.45 | V    |  |
| $V_{OL}$                         | I <sub>OL</sub> = 16 mA                                                 | 2.1/            |                       | 0.68 | V    |  |
|                                  | I <sub>OL</sub> = 24 mA                                                 | 3 V             | 1.1                   |      |      |  |
|                                  | I <sub>OL</sub> = 32 mA                                                 | 4.5 V           |                       | 1.1  |      |  |
| I <sub>I</sub> A, B, or C inputs | V <sub>I</sub> = 5.5 V or GND                                           | 0 to 5.5 V      | -12.05                | 8.6  | μΑ   |  |
| l <sub>off</sub>                 | $V_I$ or $V_O = 5.5 \text{ V}$                                          | 0               | -22                   | 41.5 | μΑ   |  |
| I <sub>cc</sub>                  | V <sub>I</sub> = 5.5 V or GND I <sub>O</sub> = 0                        | 1.65 V to 5.5 V |                       | 12.5 | μΑ   |  |
| ΔI <sub>CC</sub>                 | One input at $V_{CC} - 0.6 \text{ V}$ , Other inputs at $V_{CC}$ or GND | 3 V to 5.5 V    |                       | 500  | μΑ   |  |
| C <sub>i</sub>                   | $V_I = V_{CC}$ or GND                                                   | 3.3 V           | 3.5                   |      | pF   |  |

(1) All typical values are at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C.



- (1) See datasheet for absolute maximum and minimum recommended operating conditions.
- (2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect
- Enhanced plastic product disclaimer applies.

Copyright © 2013, Texas Instruments Incorporated

Figure 4. Electromigration Fail Mode/Wirebond Life Derating Chart

TEXAS INSTRUMENTS

SCES846 – JANUARY 2013 www.ti.com

### **Switching Characteristics**

over recommended operating free-air temperature range,  $C_L = 15 \text{ pF}$  (unless otherwise noted) (see Figure 5)

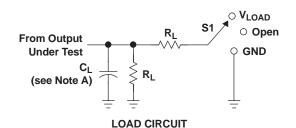
| PARAMETER       | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 1<br>± 0.15 |     | V <sub>CC</sub> = 2<br>± 0.2 |     | V <sub>CC</sub> = 3<br>± 0.3 |     | V <sub>CC</sub> = ± 0. |     | UNIT |
|-----------------|-----------------|----------------|-------------------------------|-----|------------------------------|-----|------------------------------|-----|------------------------|-----|------|
|                 | (INPOT) (C      | (001701)       | MIN                           | MAX | MIN                          | MAX | MIN                          | MAX | MIN                    | MAX |      |
| t <sub>pd</sub> | A, B, or C      | Υ              | 3.7                           | 14  | 2.5                          | 7   | 1.7                          | 5   | 1.3                    | 3.4 | ns   |

## **Switching Characteristics**

over recommended operating free-air temperature range,  $C_L = 30 \text{ pF}$  or 50 pF (unless otherwise noted) (see Figure 6)

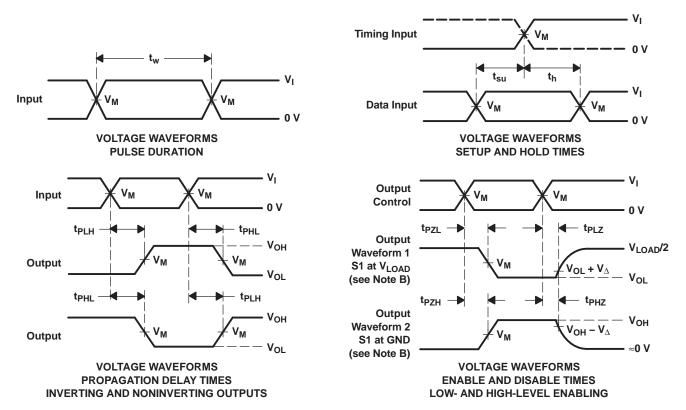
| PARAMETER       | FROM       | TO (OUTPUT) |     | V <sub>CC</sub> = 1.8 V<br>± 0.15 V |     |     |     | 2.5 V<br>V | V <sub>CC</sub> = ± 0.3 |     | V <sub>CC</sub> = ± 0.5 |  | UNIT |
|-----------------|------------|-------------|-----|-------------------------------------|-----|-----|-----|------------|-------------------------|-----|-------------------------|--|------|
|                 | (INPUT)    | (OUTPUT)    | MIN | MAX                                 | MIN | MAX | MIN | MAX        | MIN                     | MAX |                         |  |      |
| t <sub>pd</sub> | A, B, or C | Υ           | 2.5 | 17.5                                | 1.8 | 7.6 | 1.8 | 5.9        | 0.8                     | 4.5 | ns                      |  |      |

## **Operating Characteristics**


 $T_A = 25^{\circ}C$ 

|          | PARAMETER                     | TEST       | $V_{CC}$ = 1.8 V | $V_{CC} = 2.5 V$ | $V_{CC} = 3.3 \text{ V}$ | $V_{CC} = 5 V$ | UNIT |  |
|----------|-------------------------------|------------|------------------|------------------|--------------------------|----------------|------|--|
|          | PARAMETER                     | CONDITIONS | TYP              | TYP              | TYP                      | TYP            | UNIT |  |
| $C_{pd}$ | Power dissipation capacitance | f = 10 MHz | 15               | 15               | 16                       | 17             | pF   |  |




www.ti.com SCES846 – JANUARY 2013

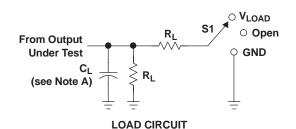
#### PARAMETER MEASUREMENT INFORMATION



| TEST                               | S1                |
|------------------------------------|-------------------|
| t <sub>PLH</sub> /t <sub>PHL</sub> | Open              |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | V <sub>LOAD</sub> |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND               |

| .,                 | INPUTS          |                                | .,                 | .,                |       | _              | v          |
|--------------------|-----------------|--------------------------------|--------------------|-------------------|-------|----------------|------------|
| V <sub>CC</sub>    | VI              | t <sub>r</sub> /t <sub>f</sub> | V <sub>M</sub>     | V <sub>LOAD</sub> | CL    | R <sub>L</sub> | $V_\Delta$ |
| 1.8 V $\pm$ 0.15 V | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | 2×V <sub>CC</sub> | 15 pF | <b>1 M</b> Ω   | 0.15 V     |
| 2.5 V $\pm$ 0.2 V  | $v_{cc}$        | ≤2 ns                          | V <sub>CC</sub> /2 | 2×V <sub>CC</sub> | 15 pF | <b>1 M</b> Ω   | 0.15 V     |
| 3.3 V $\pm$ 0.3 V  | 3 V             | ≤2.5 ns                        | 1.5 V              | 6 V               | 15 pF | <b>1 M</b> Ω   | 0.3 V      |
| 5 V $\pm$ 0.5 V    | V <sub>CC</sub> | ≤2.5 ns                        | V <sub>CC</sub> /2 | 2×V <sub>CC</sub> | 15 pF | <b>1 Μ</b> Ω   | 0.3 V      |

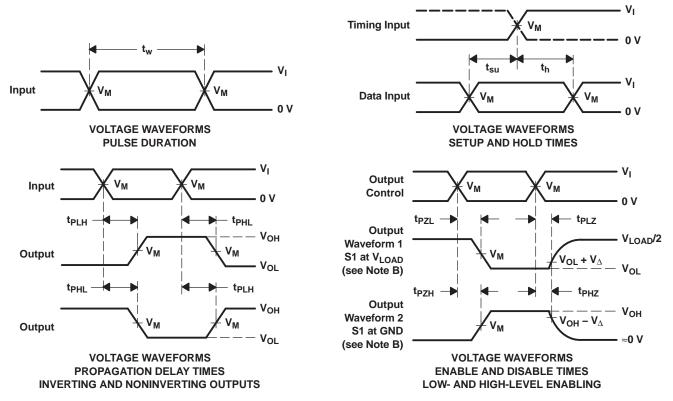



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_0 = 50 \ \Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- H. All parameters and waveforms are not applicable to all devices.

Figure 5. Load Circuit and Voltage Waveforms

SCES846 – JANUARY 2013 www.ti.com


#### PARAMETER MEASUREMENT INFORMATION



| TEST                               | S1                |
|------------------------------------|-------------------|
| t <sub>PLH</sub> /t <sub>PHL</sub> | Open              |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | V <sub>LOAD</sub> |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND               |

**STRUMENTS** 

| V <sub>CC</sub>    | INF             | PUTS                           | .,                 | V                   | 0     | _              | V            |
|--------------------|-----------------|--------------------------------|--------------------|---------------------|-------|----------------|--------------|
|                    | VI              | t <sub>r</sub> /t <sub>f</sub> | V <sub>M</sub>     | V <sub>LOAD</sub>   | CL    | R <sub>L</sub> | $V_{\Delta}$ |
| 1.8 V $\pm$ 0.15 V | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | 2×V <sub>CC</sub>   | 30 pF | <b>1 k</b> Ω   | 0.15 V       |
| 2.5 V $\pm$ 0.2 V  | $V_{CC}$        | ≤2 ns                          | V <sub>CC</sub> /2 | 2×V <sub>CC</sub>   | 30 pF | 500 Ω          | 0.15 V       |
| 3.3 V $\pm$ 0.3 V  | 3 V             | ≤2.5 ns                        | 1.5 V              | 6 V                 | 50 pF | 500 Ω          | 0.3 V        |
| 5 V $\pm$ 0.5 V    | $V_{CC}$        | ≤2.5 ns                        | V <sub>CC</sub> /2 | 2 × V <sub>CC</sub> | 50 pF | 500 Ω          | 0.3 V        |



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_0 = 50 \ \Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- H. All parameters and waveforms are not applicable to all devices.

Figure 6. Load Circuit and Voltage Waveforms



www.ti.com 9-Feb-2013

#### PACKAGING INFORMATION

| Orderable Device   | Status  | Package Type | •       | Pins | Package Qty | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Top-Side Markings | Samples |
|--------------------|---------|--------------|---------|------|-------------|----------------------------|------------------|--------------------|--------------|-------------------|---------|
|                    | (1)     |              | Drawing |      |             | (2)                        |                  | (3)                |              | (4)               |         |
| 74LVC1G3208MDBVTEP | PREVIEW | SOT-23       | DBV     | 6    | 250         | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   |                   |         |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

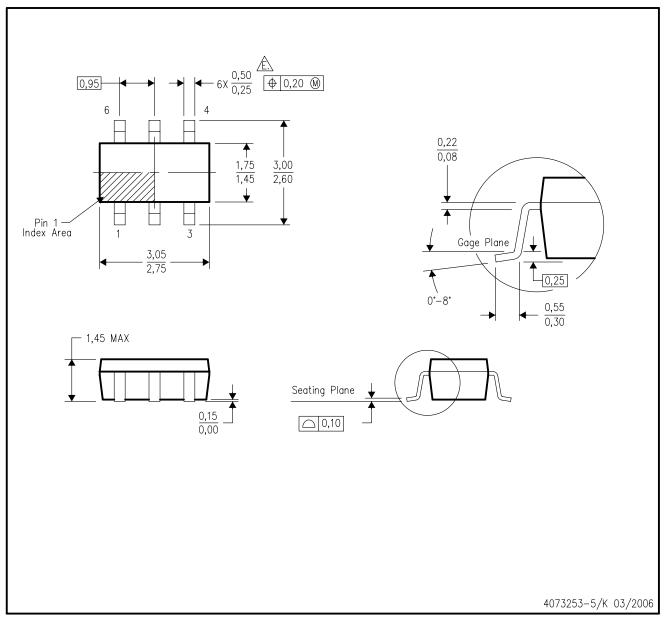
#### OTHER QUALIFIED VERSIONS OF SN74LVC1G3208-EP:

Catalog: SN74LVC1G3208

Automotive: SN74LVC1G3208-Q1






www.ti.com 9-Feb-2013

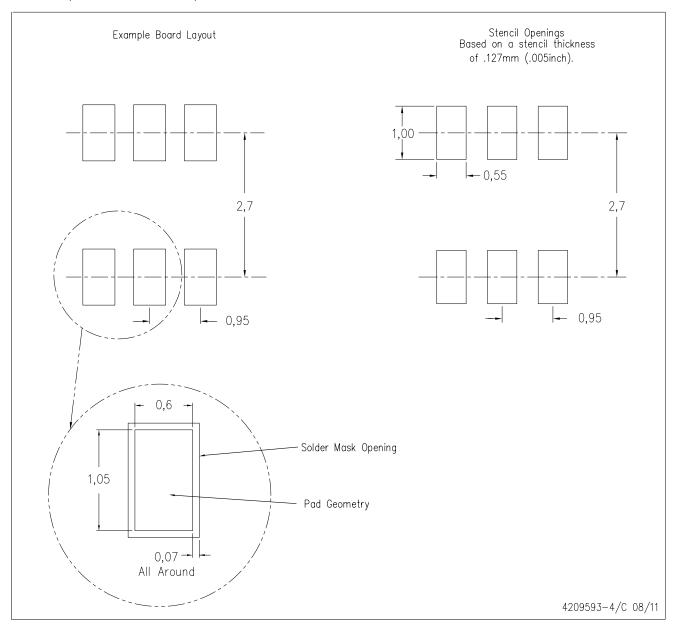
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

## DBV (R-PDSO-G6)

## PLASTIC SMALL-OUTLINE PACKAGE




NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.



## DBV (R-PDSO-G6)

## PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <a href="https://www.ti.com/omap">www.ti.com/omap</a> TI E2E Community <a href="https://example.com/omap">e2e.ti.com/omap</a>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>