PRESETTABLE BCD/DECADE UP/DOWN COUNTER
 PRESETTABLE 4-BIT BINARY UP/DOWN COUNTER

The SN54/74LS192 is an UP/DOWN BCD Decade (8421) Counter and the SN54/74LS193 is an UP/DOWN MODULO-16 Binary Counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs.

Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for a subsequent stages without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs asynchronously override the clocks.

- Low Power . . 95 mW Typical Dissipation
- High Speed . . . 40 MHz Typical Count Frequency
- Synchronous Counting
- Asynchronous Master Reset and Parallel Load
- Individual Preset Inputs
- Cascading Circuitry Internally Provided

CONNECTION DIAGRAM DIP (TOP VIEW)

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

PRESETTABLE BCD/DECADE UP/DOWN COUNTER PRESETTABLE 4-BIT BINARY UP/DOWN COUNTER LOW POWER SCHOTTKY

N SUFFIX
PLASTIC CASE 648-08

ORDERING INFORMATION

SN54LSXXXJ	Ceramic
SN74LSXXXN	Plastic
SN74LSXXXD	SOIC

LOGIC SYMBOL
PIN NAMES

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.
10 U.L.	5 (2.5) U.L.
10 U.L.	5 (2.5) U.L.

a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LS192

Figure 2. LS192 LOGIC EQUATIONS FOR TERMINAL COUNT

Figure 1.
Figure 3.
$\overline{T C}_{u}=Q_{0} \cdot Q_{3} \cdot \overline{C P u}$
$T C_{D}=\overline{Q_{0}} \cdot \overline{Q_{1}} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} \cdot \overline{C P_{D}}$
Figure 4. LS193 LOGIC EQUATIONS FOR TERMINAL COUNT
$\mathrm{TC}_{U}=\mathrm{Q}_{0} \cdot \begin{gathered}\text { Figure } \\ \mathrm{Q}_{1} \\ \mathrm{TC}_{\mathrm{D}}\end{gathered}=\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{0}} \cdot \frac{\mathrm{Q}_{3}}{\mathrm{Q}_{1}} \cdot \overline{\mathrm{Q}_{2}} \cdot \overline{\mathrm{Q}_{3}} \cdot \overline{\mathrm{CP}}$

Count Up
Count Down
LS193

LOGIC DIAGRAMS

O = PIN NUMBERS

LOGIC DIAGRAMS (continued)

The LS192 and LS193 are Asynchronously Presettable Decade and 4-Bit Binary Synchronous UP/DOWN (Reversable) Counters. The operating modes of the LS192 decade counter and the LS193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagrams. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.

Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW.

The Terminal Count Up $\left(\overline{T C}_{U}\right)$ and Terminal Count Down (TCD) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the LS192, 15 for the LS193), the next HIGH-to-LOW transition of the Count Up Clock will cause TC_{\cup} to go LOW. TC TC_{\cup} will stay LOW until CP_{U} goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the TC_{D} output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.
Each circuit has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs ($\mathrm{P}_{0}, \mathrm{P}_{3}$) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted.

MODE SELECT TABLE

MR	$\overline{\text { PL }}$	$\mathbf{C P}_{\mathbf{U}}$	$\mathbf{C P}_{\mathbf{D}}$	MODE
H	X	X	X	Reset (Asyn.)
L	L	X	X	Preset (Asyn.)
L	H	H	H	No Change
L	H	J	H	Count Up
L	H	H	S	Count Down

L = LOW Voltage Level
H = HIGH Voltage Level
X = Don't Care
$\int=$ LOW-to-HIGH Clock Transition

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54 74	$\begin{aligned} & 4.5 \\ & 4.75 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 5.5 \\ 5.25 \end{gathered}$	V
T_{A}	Operating Ambient Temperature Range	54 74	$\begin{gathered} -55 \\ 0 \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 125 \\ 70 \end{array}$	${ }^{\circ} \mathrm{C}$
IOH	Output Current - High	54, 74			-0.4	mA
$\mathrm{IOL}^{\text {O }}$	Output Current - Low	$\begin{aligned} & 54 \\ & 74 \\ & \hline \end{aligned}$	\bigcirc		$\begin{array}{r} \hline 4.0 \\ 8.0 \\ \hline \end{array}$	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	25	32		MHz	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
$\begin{array}{\|l\|l\|} \hline \mathrm{t}_{\text {PLH }} \\ \mathrm{t}_{\text {PHL }} \end{array}$	CPu Input to $\overline{T C}_{U}$ Output		$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 26 \\ & 24 \end{aligned}$	ns	
$\begin{array}{\|l\|l\|} \hline \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \end{array}$	CP ${ }_{\text {D }}$ Input to $\overline{T C}_{D}$ Output		$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	ns	
$\begin{array}{\|l\|l} \mathrm{t}_{\mathrm{PLLH}} \\ \mathrm{t}_{\mathrm{PHL}} \end{array}$	Clock to Q		$\begin{aligned} & 27 \\ & 30 \end{aligned}$	$\begin{aligned} & 38 \\ & 47 \end{aligned}$	ns	
$\begin{array}{\|l\|l} \mathrm{t}_{\mathrm{PLL}} \\ \mathrm{t}_{\mathrm{PHL}} \end{array}$	PL to Q		$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	ns	
$t_{\text {PHL }}$	MR Input to Any Output		23	35	ns	

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tw	Any Pulse Width	20			ns	\cdots
t_{s}	Data Setup Time	20			ns	
t_{n}	Data Hold Time	5.0			ns	$\mathrm{CC}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {rec }}$	Recovery Time	40			ns	

DEFINITIONS OF TERMS

SETUP TIME (t_{s}) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the PL transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_{h}) is defined as the minimum time following the $\overline{\text { PL transition from LOW-to-HIGH that the logic level must be }}$ maintained at the input in order to ensure continued
recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the PL transition from LOW-to-HIGH and still be recognized.
RECOVERY TIME ($\mathrm{t}_{\mathrm{rec}}$) is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs.

AC WAVEFORMS

Figure 1

Figure 2

Figure 4

* The shaded areas indicate when the input is permitted
to change for predictable output performance

Figure 6

Figure 7

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

