
- **Qualified for Automotive Applications**
- Wide Operating Voltage Range of 2 V to 6 V
- **Outputs Can Drive Up To 10 LSTTL Loads**
- Low Power Consumption, 80-µA Max I_{CC}
- Typical $t_{pd} = 14 \text{ ns}$
- ±4-mA Output Drive at 5 V
- Low Input Current of 1 µA Max
- Internal Look-Ahead for Fast Counting

description/ordering information

This synchronous, presettable counter features an internal carry look-ahead for application in high-speed counting designs. The SN74HC163 is a 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked

- Carry Output for n-Bit Cascading
- **Synchronous Counting**
- **Synchronously Programmable**

simultaneously so that the outputs change coincident with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

This counter is fully programmable; that is, it can be preset to any number between 0 and 9 or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

The clear function for the SN74HC163 is synchronous. A low level at the clear (CLR) input sets all four of the flip-flop outputs low after the next low-to-high transition of CLK, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to CLR to synchronously clear the counter to 0000 (LLLL).

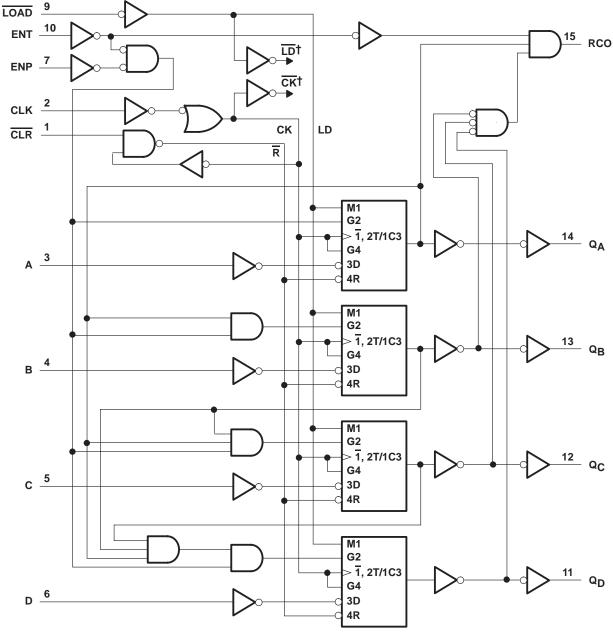
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP, ENT, and a ripple-carry output (RCO) are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 with QA high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

ORDERING INFORMATION†

TA	PACKAC	GE‡	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	TSSOP - PW	Tape and reel	SN74HC163IPWRQ1	HC163I

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

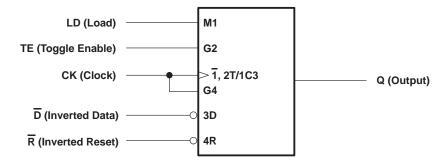
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

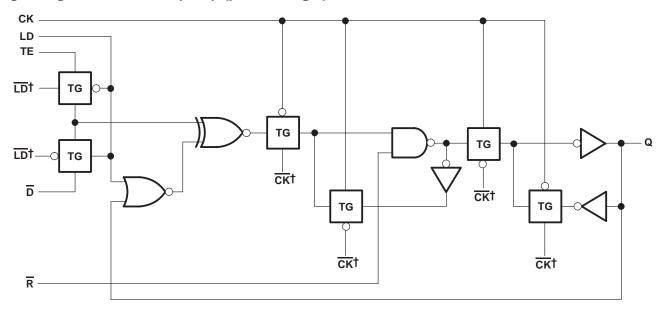


[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

description/ordering information (continued)

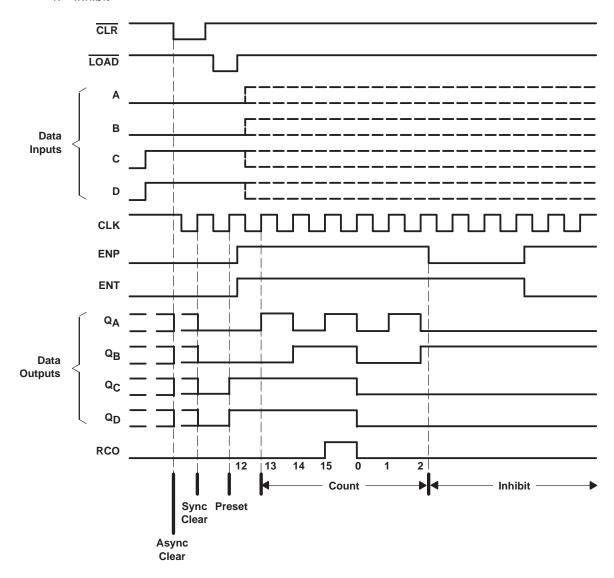
This counter features a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text{LOAD}}$) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.


logic diagram (positive logic)


[†] For simplicity, routing of complementary signals $\overline{\mathsf{LD}}$ and $\overline{\mathsf{CK}}$ is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops.

logic symbol, each D/T flip-flop

logic diagram, each D/T flip-flop (positive logic)



 $[\]dagger$ The origins of $\overline{\text{LD}}$ and $\overline{\text{CK}}$ are shown in the logic diagram of the overall device.

typical clear, preset, count, and inhibit sequence

The following sequence is illustrated below:

- 1. Clear outputs to zero (synchronous)
- 2. Preset to binary 12
- 3. Count to 13, 14, 15, 0, 1, and 2
- 4. Inhibit

SN74HC163-Q1 4-BIT SYNCHRONOUS BINARY COUNTER

SCLS584A - MAY 2004 - REVISED APRIL 2008

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 1)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 2): PW package	
Storage temperature range, T _{stq}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT				
Vcc	Supply voltage		2	5	6	V				
		V _{CC} = 2 V	1.5							
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			V				
		VCC = 6 V	4.2							
		V _{CC} = 2 V			0.5					
VIL	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35	V				
		V _{CC} = 6 V			1.8					
٧ _I	Input voltage		0		VCC	V				
Vo	Output voltage		0		VCC	V				
		V _{CC} = 2 V			1000					
Δt/Δv‡	Input transition rise/fall time	V _{CC} = 4.5 V			500	ns				
	VCC = 6 V				400					
TA	Operating free-air temperature		-40		85	°C				

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

[‡] If this device is used in the threshold region (from V_{IL}max = 0.5 V to V_{IH}min = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at t_t = 1000 ns and V_{CC} = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

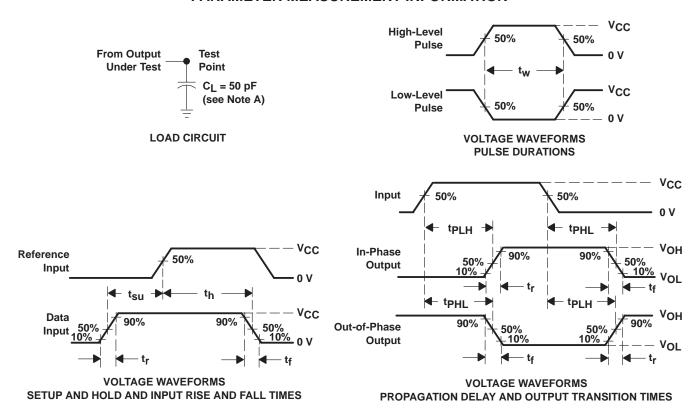
24244555	TEST CONDITIONS		.,	Т	A = 25°C	;			
PARAMETER			VCC	MIN	TYP	MAX	MIN	MAX	UNIT
			2 V	1.9	1.998		1.9		
		$I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4		
Voн	VI = VIH or VIL		6 V	5.9	5.999		5.9		V
		$I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.84		
		$I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8		5.34		
	VI = VIH or VIL	I _{OL} = 20 μA	2 V		0.002	0.1		0.1	
			4.5 V		0.001	0.1		0.1	
VOL			6 V		0.001	0.1		0.1	V
		I _{OL} = 4 mA	4.5 V		0.17	0.26		0.33	
		$I_{OL} = 5.2 \text{ mA}$	6 V		0.15	0.26		0.33	
lį	VI = VCC or 0		6 V		±0.1	±100		±1000	nA
ICC	$V_I = V_{CC}$ or 0,	IO = 0	6 V			8		80	μΑ
Ci			2 V to 6 V		3	10		10	pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

				T _A = 1	25°C	MAINI	MAY	
			vcc	MIN	MAX	MIN	MAX	UNIT
			2 V		6		5	
fclock	Clock frequency		4.5 V		31		25	MHz
			6 V		36		29	
			2 V	80		100		
t_{W}	Pulse duration	CLK high or low	4.5 V	16		20		ns
			6 V	14		17		
			2 V	150		190		
		A, B, C, or D		30		38		
			6 V	26		32		
			2 V	135		170		
		LOAD low	4.5 V	27		34		
			6 V	23		29		
			2 V	170		215		
t _{su}	Setup time before CLK↑	ENP, ENT	4.5 V	34		43		ns
			6 V	29		37		
			2 V	160		200		
		CLR low	4.5 V	32		40		
			6 V	27		34		
			2 V	160		200		
		CLR inactive	4.5 V	32		40		
			6 V	27		34		
			2 V	0		0		
th	Hold time, all synchronous inputs after CLK↑		4.5 V	0		0		ns
			6 V	0		0		

SN74HC163-Q1 4-BIT SYNCHRONOUS BINARY COUNTER

SCLS584A - MAY 2004 - REVISED APRIL 2008


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

242445752	FROM	то	.,	T,	ղ = 25°C	;			
PARAMETER	(INPUT)	(OUTPUT)	vcc	MIN	TYP	MAX	MIN	MAX	UNIT
			2 V	6	14		5		
f _{max}			4.5 V	31	40		25		MHz
			6 V	36	44		29		
			2 V		83	215		270	
		RCO	4.5 V		24	43		54	
	CLK		6 V		20	37		46	
			2 V		80	205		255	
^t pd		Any Q	4.5 V		25	41		51	ns
			6 V		21	35		43	
			2 V		62	195		245	
	ENT	RCO	4.5 V		17	39		49	
			6 V		14	33		42	
			2 V		38	75		95	
t _t		Any	4.5 V		8	15		19	ns
			6 V		6	13		16	

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
Cpd	Power dissipation capacitance	No load	60	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 6 \ ns$, $t_f = 6 \ ns$.
- C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

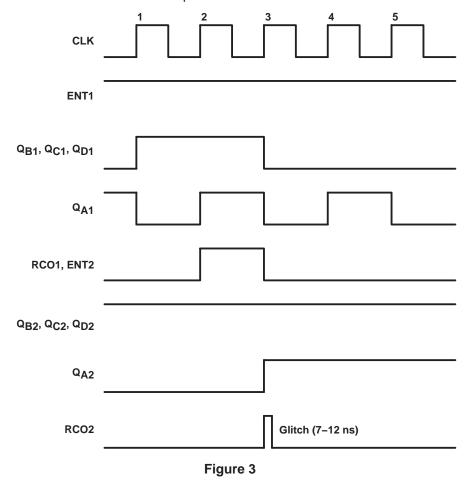
APPLICATION INFORMATION

n-bit synchronous counters

This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The SN74HC163 counts in binary. Virtually any count mode (modulo-N, N₁-to-N₂, N₁-to-maximum) can be used with this fast look-ahead circuit.

The application circuit shown in Figure 2 is not valid for clock frequencies above 18 MHz (at 25° C and 4.5-V V_{CC}). The reason for this is that there is a glitch that is produced on the second stage's RCO and every succeeding stage's RCO. This glitch is common to all HC vendors that Texas Instruments has evaluated, in addition to the bipolar equivalents (LS, ALS, AS).

APPLICATION INFORMATION CLR Clear (L) _ LOAD M1 **RCO** Count (H)/ 3CT=MAX **ENT** G3 Disable (L) **ENP** G4 CLK > C5/2,3,4+ Load (L) 1,5D [1] Q_{A} [2] Q_{B} Count (H)/ Disable (L) [3] Q_{C} Q_D [4] Clock CTR CLR CT=0 LOAD **RCO** M1 3CT=MAX **ENT** G3 **ENP** G4 CLK > C5/2,3,4+ 1,5D [1] Q_{A} [2] Q_{B} [3] Q_{C} [4] Q_{D} **CTR** CLR CT=0 LOAD **RCO** M1 3CT=MAX **ENT** G3 **ENP** G4 CLK > C5/2,3,4+ 1,5D [1] Q_A [2] Q_B Q_{C} [3] [4] Q_D CT=0 CLR LOAD M1 **RCO** 3CT=MAX **ENT** G3 **ENP** G4 **CLK** > C5/2,3,4+ 1,5D [1] Q_{A} [2] Q_{B} Q_{C} [3] [4] Q_D


To More-Significant Stages
Figure 2

APPLICATION INFORMATION

n-bit synchronous counters (continued)

The glitch on RCO is caused because the propagation delay of the rising edge of Q_A of the second stage is shorter than the propagation delay of the falling edge of ENT. RCO is the product of ENT, Q_A , Q_B , Q_C , and Q_D (ENT \times $Q_A \times Q_B \times Q_C \times Q_D$). The resulting glitch is about 7 ns to 12 ns in duration. Figure 3 shows the condition in which the glitch occurs. For simplicity, only two stages are being considered, but the results can be applied to other stages. Q_B , Q_C , and Q_D of the first and second stage are at logic one, and Q_A of both stages are at logic zero (1110 1110) after the first clock pulse. On the rising edge of the second clock pulse, Q_A and RCO of the first stage go high. On the rising edge of the third clock pulse, Q_A and RCO of the first stage return to a low level, and Q_A of the second stage goes to a high level. At this time, the glitch on RCO of the second stage appears because of the race condition inside the chip.

The glitch causes a problem in the next stage (stage three) if the glitch is still present when the next rising clock edge appears (clock pulse 4). To ensure that this does not happen, the clock frequency must be less than the inverse of the sum of the clock-to-RCO propagation delay and the glitch duration (t_g). In other words, $t_{max} = 1/(t_{pd} \text{ CLK-to-RCO} + t_g)$. For example, at 25°C at 4.5-V t_{CC} , the clock-to-RCO propagation delay is 43 ns and the maximum duration of the glitch is 12 ns. Therefore, the maximum clock frequency that the cascaded counters can use is 18 MHz. The following tables contain the t_{clock} , t_{tw} , and t_{tw} specifications for applications that use more than two 'HC163 devices cascaded together.

APPLICATION INFORMATION

n-bit synchronous counters (continued)

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

		.,	T _A = 2	25°C	BAIN!	MAY	
		vcc	MIN	MAX	MIN	MAX	UNIT
		2 V		3.6		2.9	
fclock	Clock frequency	4.5 V		18		14 MHz	MHz
		6 V		21		17	
		2 V	140		170		
t _W	Pulse duration, CLK high or low	4.5 V	28		36		ns
			24		30	·	

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Note 4)

DADAMETED	FROM TO		.,	T _A = 2	25°C		MAY	
PARAMETER	(INPUT)	(OUTPUT)	vcc	MIN	MAX	MIN	MAX	UNIT
			2 V	3.6		2.9		
fmax			4.5 V	18		14		MHz
			6 V	21		17		

NOTE 4: These limits apply only to applications that use more than two 'HC163 devices cascaded together.

If the SN74HC163 device is used as a single unit, or only two are cascaded together, then the maximum clock frequency that the device can use is not limited because of the glitch. In these situations, the device can be operated at the maximum specifications.

A glitch can appear on the RCO of a single SN74HC163 device, depending on the relationship of ENT to CLK. Any application that uses RCO to drive any input, except an ENT of another cascaded SN74HC163 device, must take this into consideration.

6-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
SN74HC163IPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74HC163IPWRQ1	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

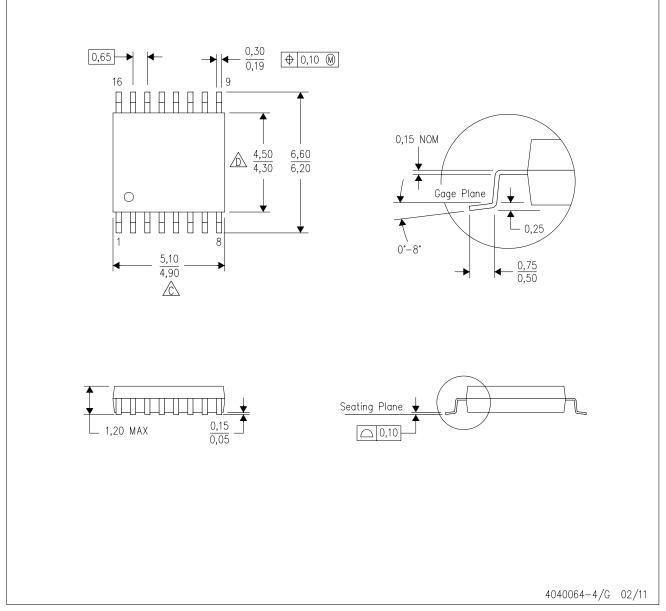
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74HC163-Q1:

Catalog: SN74HC163

Military: SN54HC163

PACKAGE OPTION ADDENDUM

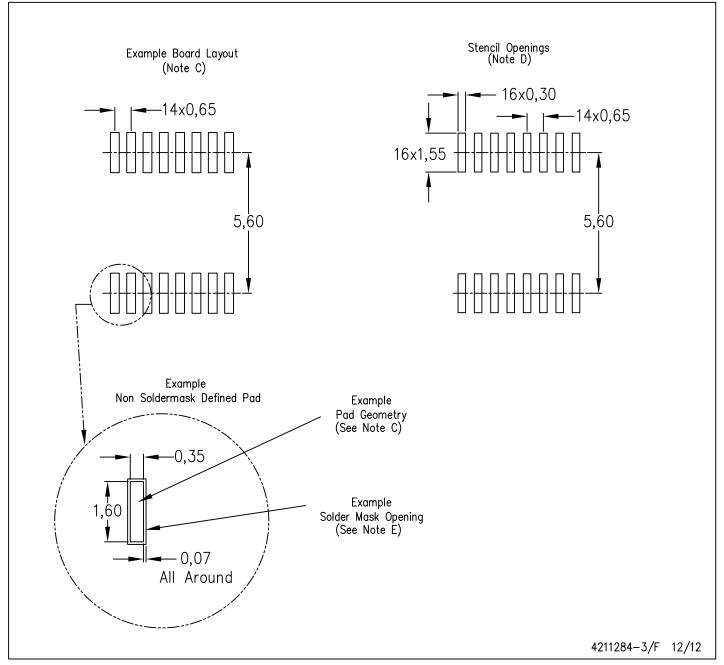

6-Jan-2013

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>