
www.ti.com SCDS271 – MAY 2008

LOW-VOLTAGE 4-BIT 1-OF-2 FET MULTIPLEXER/DEMULTIPLEXER

FEATURES

- Controlled Baseline
 - One Assembly Site
 - One Test Site
 - One Fabrication Site
- Extended Temperature Performance of -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- 5-Ω Switch Connection Between Two Ports
- Rail-to-Rail Switching on Data I/O Ports
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

The SN74CBTLV3257 is a 4-bit 1-of-2 high-speed FET multiplexer/demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The select (S) input controls the data flow. The FET multiplexers/demultiplexers are disabled when the output-enable (OE) input is high.

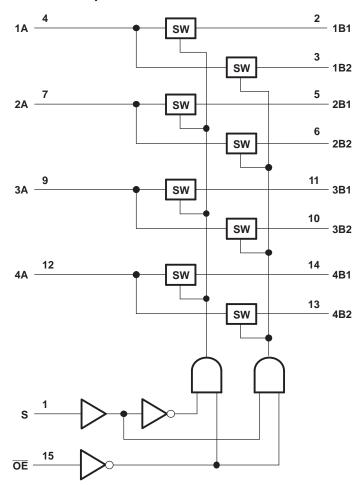
This device is fully specified for partial-power-down applications using I_{off} . The I_{off} feature ensures that damaging current does not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCDS271-MAY 2008 www.ti.com

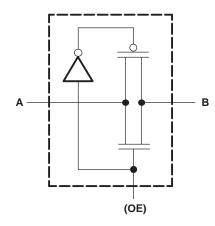
ORDERING INFORMATION(1)


T _A	PACKAG	E ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
-55°C to 125°C	TSSOP - PW	Tape and reel	CCBTLV3257MPWREP	C3257EP		

- (1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

FUNCTION TABLE

INP	UTS	FUNCTION
ŌĒ	S	
L	L	A port = B1 port
L	Н	A port = B2 port
Н	Х	Disconnect


LOGIC DIAGRAM (POSITIVE LOGIC)

www.ti.com SCDS271-MAY 2008

SIMPLIFIED SCHEMATIC, EACH FET SWITCH

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range (2)		-0.5	4.6	V
	Continuous channel current	Continuous channel current		128	mA
I _{IK}	Input clamp current	V _{IO} < 0)		-50	mA
θ_{JA}	Package thermal impedance	PW package ⁽³⁾		108	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions(1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2.3	3.6	V
V	High lovel control input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V
V _{IH}	High-level control input voltage $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$				V
V	Low-level control input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
V _{IL}	Low-level control input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	V
T _A	Operating free-air temperature		- 55	125	°C

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS					UNIT
V_{IK}	$V_{CC} = 3 V$,	$I_I = -18 \text{ mA}$				-1.2	V
I _I	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND				±1	μΑ
I _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to 3.6 V				15	μΑ
I _{CC}	$V_{CC} = 3.6 \text{ V},$	$I_{O} = 0$,	$V_I = V_{CC}$ or GND			10	μΑ

(1) All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SCDS271-MAY 2008 www.ti.com

Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

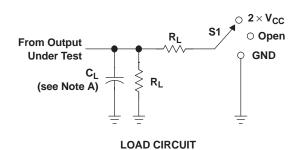
PA	RAMETER		TEST CONDITIONS			MAX	UNIT
ΔI _{CC} ⁽²⁾	Control inputs	V _{CC} = 3.6 V,	One input at 3 V,	Other inputs at V _{CC} or GND		300	μА
Ci	Control inputs	V _I = 3 V or 0			3		pF
0	A port	V 2 V or 0	OF V		10.5		pF
C _{io(OFF)}	B port	$V_0 = 3 \text{ V or } 0,$	$\overline{OE} = V_{CC}$		5.5		ρг
				I _I = 64 mA	5	8	
		$V_{CC} = 2.3 \text{ V},$ TYP at $V_{CC} = 2.5 \text{ V}$ $I_{I} = 24 \text{ m/s}$	I _I = 24 mA	5	8		
r _{on} (3)		777 at v _{CC} = 2.0 v	$V_{l} = 1.7 \text{ V},$ $I_{l} = 15 \text{ mA}$	27	40	0	
Ion (°)			V 0	I _I = 64 mA	5	7	Ω
		$V_{CC} = 3 \text{ V}$ $V_{I} = 0$ $I_{I} = 24 \text{ mA}$	I _I = 24 mA	5	7		
			V _I = 2.4 V,	I _I = 15 mA	10	15	

Switching Characteristics

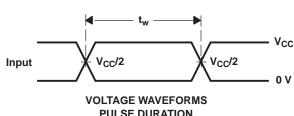
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

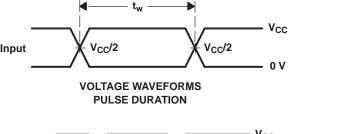
PARAMETER	FROM	TO	V _{CC} = 2 ± 0.2		V _{CC} = 3 ± 0.3		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	
	A or B ⁽¹⁾	B or A		0.15		0.25	ns
t _{pd}	S	A or B	1.8	8.1	1.8	7.3	
t _{en}	S	A or B	1.7	7.5	1.7	6.5	ns
t _{dis}	S	A or B	1	6.3	1	6.0	ns
t _{en}	ŌĒ	A or B	1.9	7.1	2	6.2	ns
t _{dis}	ŌĒ	A or B	1	1 7.0		6.5	ns

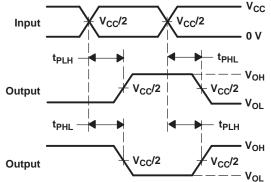
⁽¹⁾ The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).


Submit Documentation Feedback

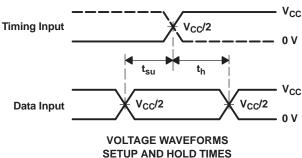
This is the increase in supply current for each input that is at the specified voltage level, rather than V_{CC} or GND. Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

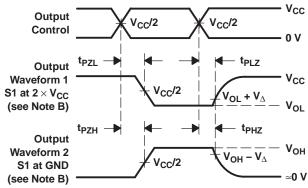

SCDS271-MAY 2008 www.ti.com


PARAMETER MEASUREMENT INFORMATION



TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	2×V _{CC}
t _{PHZ} /t _{PZH}	GND


V _{CC}	CL	R _L	${f V}_{\!\Delta}$
2.5 V \pm 0.2 V	30 pF	500 Ω	0.15 V
3.3 V \pm 0.3 V	50 pF	500 Ω	0.3 V

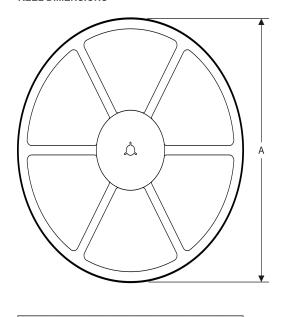


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

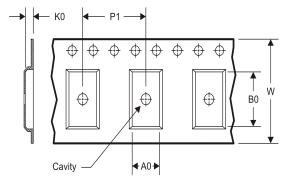
VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.


Figure 1. Load Circuit and Voltage Waveforms

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

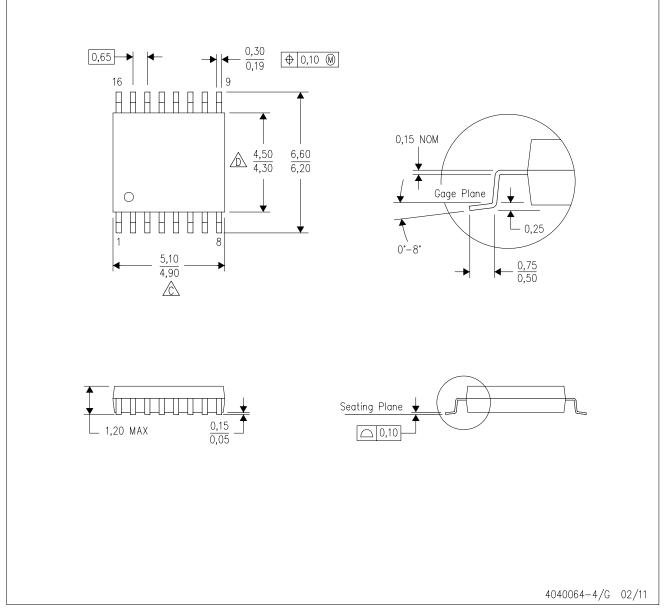
TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CCBTLV3257MPWREP	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

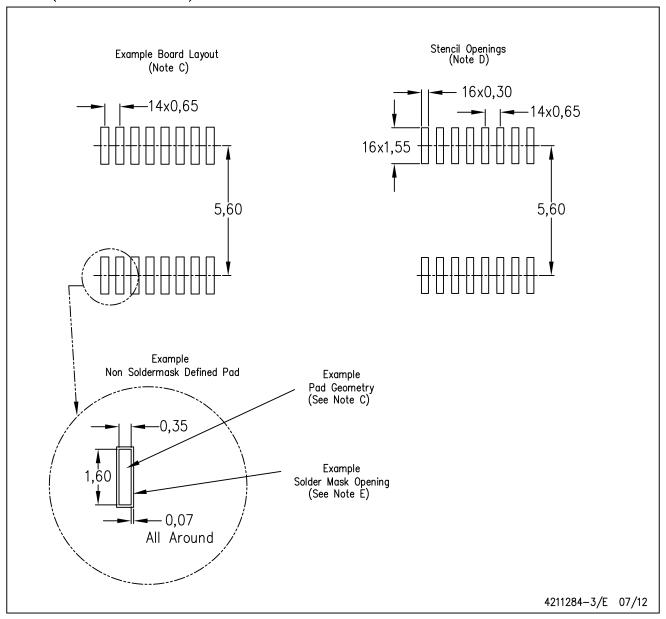


*All dimensions are nominal

Device	Package Type	Package Drawing Pins		SPQ	Length (mm)	Width (mm)	Height (mm)	
CCBTLV3257MPWREP	TSSOP	PW	16	2000	367.0	367.0	35.0	

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti oom/oudio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr