- Multiplexed Real-Time and Latched Data
- Byte Control for Byte-Write Applications
- Useful in NuBus ${ }^{\text {M }}$ Interface Applications
- Useful in Memory Interleave Applications

- BiCMOS Design Substantially Reduces Standby Current

- Dependable Texas Instruments Quality and Reliability

SN74BCT2423A... FN PACKAGE
(TOP VIEW)

description

The 'BCT2423A and 'BCT2424A are general-purpose 16-bit bidirectional transceivers with data storage latches and byte control circuitry arranged for use in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor- or bus-interface applications. These devices are also useful in memory-interleaving applications. The 'BCT2423A and 'BCT2424A offer inverted and noninverted data paths, respectively.

The 'BCT2423A and 'BCT2424A were designed using Texas Instruments BiCMOS process, which features bipolar drive characteristics, but also greatly reduces the standby power of the device when disabled. This is valuable when the device is not performing an address or data transfer.

Three 16-bit I/O ports, A15-A0, B15-B0, and AB15-AB0 are available for address and/or data transfer. The $\overline{\mathrm{AENM}}, \overline{\mathrm{AENL}}, \overline{\mathrm{BENM}}, \overline{\mathrm{BENL}}, \overline{\mathrm{ABENM}}$, and $\overline{\mathrm{ABENL}}$ inputs control the bus transceiver functions. These control signals also allow byte-control of the most significant byte and least significant byte for each bus.
Address and/or data information can be stored using the internal storage latches. The $\overline{\operatorname{ALE}}, \overline{\mathrm{BLE}}, \overline{\mathrm{ABLEA}}$, and $\overline{A B L E B}$ inputs are active low, and are used to control data storage. When the latch enable input is low, the latch is transparent. When the latch enable input goes high, the data present at the inputs is latched, and remains latched until the latch enable input is returned low.

Data on the 'A' bus and 'B' bus are multiplexed onto the 'AB' bus via the $\overline{\mathrm{A}} / \mathrm{BSEL}$ control line. When $\overline{\mathrm{A}} / \mathrm{BSEL}$ is low, $A 15-A 0$ is mapped to the $A B 15-A B 0$ outputs. When $\bar{A} / B S E L$ is high, $B 15-B 0$ is mapped to the AB15-AB0 outputs.

The SN74BCT2423A and SN74BCT2424A are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
logic symbol for the 'BCT2423A \dagger

† These logic symbols are in accordance with ANSIIIEEE Std 91-1984.
logic symbol for the 'BCT2424A \dagger

\dagger These logic symbols are in accordance with ANSI/IEEE Std 91-1984.
logic diagram for 'BCT2423A (positive logic)

logic diagram for 'BCT2424A (positive logic)

SN74BCT2423A, SN74BCT2424A 16-BIT LATCHED MULTIPLEXER/DEMULTIPLEXER BUS TRANSCEIVERS

SDIS013 - JULY 1989 - REVISED AUGUST 1990
Terminal Functions

TERMINAL PINS	DESCRIPTION
A 15-A0	A bus. This 16-bit I/O port allows for transmission of data and/or address information to or from the $A B$ bus. Information transfer between the A bus and the AB bus is inverting for the 'BCT2423A and noninverting for the 'BCT2424A.
$\overline{\mathrm{AB}} 15-\overline{\mathrm{AB}} 0$ ('BCT2423A) AB 15-AB0 ('BCT2424A)	AB Bus. This 16 -bit i/o port allows for multiplexed transmission of data and/or address information to or from the A and B buses. Information transfer between the A, B, and $A B$ buses is inverting for the 'BCT2423A and noninverting for the 'ВСТ2424A.
$\overline{\text { ABENL }}$	AB Bus Output Enable, Least Significant Byte. This active-low input is used to enable the AB7-AB0 outputs. When this input is high, the $A B 7-A B 0$ outputs are in the high-impedance state allowing for data input.
$\overline{\text { ABENM }}$	AB Bus Latch Enable, Most Significant Byte. This active-low input is used to enable the AB15-AB8 outputs. When this input is high, the AB15-AB8 outputs are in the high-impedance state allowing for data input.
$\overline{\text { ABLEA }}$	AB Bus Latch Enable to A Bus. This active-low input is used to control the latch that holds data received from the $A B$ bus ($A B 15-A B 0$) to be transferred to the A bus (A15-A0). When $\overline{A B L E A}$ is low, the latch is transparent. When $\overline{A B L E A}$ transitions to the high level, the data present at the $A B 15-A B 0$ inputs is latched, and it remains latched while $\overline{A B L E A}$ is high.
$\overline{\text { ABLEB }}$	AB Bus Latch Enable to B Bus. This active-low input is used to control the latch that holds data received from the $A B$ bus (AB15-AB0) to be transferred to the B bus (B15-B0). When $\overline{A B L E B}$ is low, the latch is transparent. When $\overline{\mathrm{ABLEB}}$ transitions to the high level, the data present at the $A B 15-A B 0$ inputs is latched, and it remains latched while $\overline{\mathrm{ABLEB}}$ is high.
$\overline{\text { A }}$ /BSEL	A/B Select Control. This input controls the A/B multiplexer. When the input is low, the A15-A0 is selected as input to the $A B 15-A B 0$ outputs. When the input is high, $B 15-B 0$ is selected as input to the $A B 15-A B 0$ outputs.
$\overline{\text { AENL }}$	A Bus Output Enable, Least Significant Byte. This active-low input is used to enable the A7-A0 outputs. When this input is high, the A7-A0 outputs are in the high-impedance state allowing for data input.
$\overline{\text { AENM }}$	A Bus Output Enable, Most Significant Byte. This active-low input is used to enable the A15-A8 outputs. When this input is high, the A15-A8 outputs are in the high-impedance state allowing for data input.
$\overline{\text { ALE }}$	A Bus Latch Enable. This active-low input is used to control the latch that holds data received from the A bus (A15-A0). When $\overline{\operatorname{ALE}}$ is low, that latch is transparent. When $\overline{\mathrm{ALE}}$ transitions to the high level, the data present at the A15-A0 inputs is latched and remains latched while $\overline{\text { ALE }}$ is high.
B15-B0	B Bus. This 16-bit I/O port allows for transmission of data and/or address information to or from the AB bus. Information transfer between the B bus and the AB bus is inverting for the 'BCT2423A and noninverting for the 'BCT2424A.
$\overline{\mathrm{BENL}}$	B Bus Output Enable, Least Significant Byte. This active-low input is used to enable the B7-B0 outputs. When this input is high, the $\mathrm{B} 7-\mathrm{BO}$ outputs are in the high-impedance state allowing for data input.
$\overline{\text { BENM }}$	B Bus Output Enable, Most Significant Byte. This active-low input is used to enable the B15-B8 outputs. When this input is high, the B15-B8 outputs are in the high-impedance state allowing for data input.
$\overline{\text { BLE }}$	B Bus Latch Enable. This active-low input is used to control the latch that holds data received from the B bus ($\mathrm{B} 15-\mathrm{BO}$). When $\overline{\mathrm{BLE}}$ is low, that latch is transparent. When $\overline{\mathrm{BLE}}$ transitions to the high level, that data present at the B15-B0 inputs is latched and remains latched while BLE is high.

Function Tables

DIRECTION A OR B TO AB										
INPUTS							OUTPUTS			
							'BCT2423A		'BCT2424A	
Ax	Bx	$\overline{\text { ALE }}$	BLE	$\overline{\text { A } / B S E L ~}$	$\overline{\text { ABENM }}$	$\overline{\text { ABENL }}$	$\overline{\mathrm{AB}}$ 15-8	$\overline{\mathrm{AB}} 7-0$	AB 15-8	AB 7-0
H	X	L	X	L	L	L	L		H	
L	X	L	X	L	L	L	H		L	
X	X	H	X	L	L	L	$\overline{\mathrm{AB}}_{0}$		AB_{0}	
X	H	X	L	H	L	L	L		H	
X	L	X	L	H	L	L	H		L	
X	X	X	H	H	L	L	$\overline{\mathrm{AB}}_{0}$		AB_{0}	
X	X	X	X	X	L	L	Active	Active	Active	Active
X	X	X	X	X	L	H	Active	Z	Active	Z
X	X	X	X	X	H	L	Z	Active	Z	Active
X	X	X	X	X	H	H	Z	Z	Z	Z

DIRECTION AB TO A OR B								
INPUTS					OUTPUTS			
$\overline{\mathrm{AB}} \mathrm{x}$	ABLEA	$\overline{\text { ABLEB }}$	$\begin{aligned} & \overline{\text { AENL }} \dagger \\ & \overline{\text { AENM }} \dagger \end{aligned}$	$\begin{aligned} & \hline \overline{\text { BENL }} \dagger \\ & \overline{\text { BENM }} \dagger \end{aligned}$	'BCT2423A		'BCT2424A	
ABx					Ax	Bx	Ax	Bx
H	L	L	L	L	L	L	H	H
L	L	L	L	L	H	H	L	L
H	L	H	L	L	L	B_{0}	H	B_{0}
L	L	H	L	L	H	B_{0}	L	B_{0}
H	H	L	L	L	A_{0}	L	A_{0}	H
L	H	L	L	L	A_{0}	H	A_{0}	L
X	H	H	L	L	A_{0}	B_{0}	A_{0}	B_{0}
X	X	X	L	L	Active	Active	Active	Active
X	X	X	L	H	Active	Z	Active	Z
X	X	X	H	L	Z	Active	Z	Active
X	X	X	H	H	Z	Z	Z	Z

[^0]
SN74BCT2423A, SN74BCT2424A 16-BIT LATCHED MULTIPLEXER/DEMULTIPLEXER BUS TRANSCEIVERS

absolute maximum ratings over operating free-air temperature range(unless otherwise noted) \dagger

```
Supply voltage, \(\mathrm{V}_{\mathrm{CC}}\) (see Note 1) 7 V
```

Input voltage (all inputs and I/O ports) .. 5.5 V
Operating free-air temperature range
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range -65° to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "recommended operating conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to GND.
recommended operating conditions

PARAMETER			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.75	5	5.25	V
V_{IH}	High-level input voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IOH	High-level output current	$\mathrm{A}_{\mathrm{x}}, \mathrm{B}_{\mathrm{x}}$ outputs			-15	mA
		$\overline{\mathrm{AB}}_{\mathrm{x}}$ or $A B_{x}$ outputs			-15	
${ }^{\text {IOL}}$	Low-level output current	A_{x}, B_{x} outputs			24	mA
		$\overline{\overline{A B}}_{\mathrm{x}}$ or AB_{x} outputs			48	
$t_{\text {w }}$	Pulse duration	$\overline{\text { ABLEA }}$, $\overline{\mathrm{ABLEB}}$ high or low	12.5			ns
		$\overline{\overline{A L E}, ~ \overline{B L E}}$ high or low	12.5			
$\mathrm{t}_{\text {su }}$	Setup time	Data before $\overline{\mathrm{xLEx}} \uparrow$	10			ns
$\mathrm{th}^{\text {l }}$	Hold time	Data after $\overline{\mathrm{xLEx}} \uparrow$	2			ns
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	TYP \dagger	MAX	$\begin{gathered} \text { UNIT } \\ \hline \mathrm{V} \\ \hline \end{gathered}$
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2	
V_{OH}		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-$			V
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{OH}=-3 \mathrm{~mA}$	2.8	3.6		
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{l}^{\mathrm{OH}}=-15 \mathrm{~mA}$	2			
VOL	A_{X}, B_{X} outputs	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4	V
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOL}=24 \mathrm{~mA}$		0.35	0.5	
	A_{X}, B_{X} outputs	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOL}=24 \mathrm{~mA}$		0.25	0.4	
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$		0.35	0.5	
1		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
${ }_{11}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			$\begin{array}{r} 20 \\ -100 \end{array}$	$\mu \mathrm{A}$
$1_{1 /}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
Ios§		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{0}=0$	-60		-225	mA
ICC	Enabled	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IH}}=3 \mathrm{~V}, \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V},$ Outputs open		110	170	mA
	Disabled				20	40	

[^1]SDIS013 - JULY 1989 - REVISED AUGUST 1990
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	$\begin{gathered} \hline \text { FROM } \\ \text { (INPUT) } \end{gathered}$	TO (OUTPUT)	TEST CONDITIONS \ddagger	MIN TYPt	MAX	UNIT
tpd	$\overline{\mathrm{AB}} \times, \mathrm{ABx}$	Ax	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{1}=500 \Omega, \mathrm{R}_{2}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$	8	12	ns
tpd	$\overline{\mathrm{AB}} \times, \mathrm{ABx}$	Bx		8	12	ns
tpd	Ax	$\overline{\overline{A B}} \mathrm{x}, \mathrm{ABx}$		9	12	ns
tpd	Bx	$\overline{\mathrm{AB}} \mathrm{x}, \mathrm{ABx}$		9	12	ns
tpd	$\overline{\text { ALE }} \downarrow$	$\overline{\mathrm{AB}} x, A B x$		10	13	ns
tpd	$\overline{\text { BLE }} \downarrow$	$\overline{\mathrm{AB}} x, A B x$		10	13	ns
tpd	$\overline{\text { ABLEA }} \downarrow$	Ax		8	12	ns
tpd	$\overline{\text { ABLEB }} \downarrow$	Bx		8	12	ns
tpd	$\overline{\mathrm{A}} / \mathrm{BSEL}$	$\overline{\mathrm{AB}} \mathrm{x}, \mathrm{ABx}$		8	12	ns
ten	$\overline{\overline{\mathrm{AENM}}} \overline{\overline{\mathrm{AENL}}}$	Ax		10	13	ns
ten	$\frac{\overline{\mathrm{BENM}}}{\overline{\mathrm{BENL}}}$	$B x$		10	13	ns
ten	$\overline{\overline{\overline{A B E N M}}} \overline{\overline{\text { ABENLL}}}$	$\overline{\mathrm{AB}} \mathrm{x}, \mathrm{ABx}$		10	13	ns
${ }^{\text {dis }}$	$\overline{\overline{\mathrm{AENM}}} \overline{\overline{\mathrm{AENL}}}$	Ax		5	10	ns
${ }^{\text {d }}$ dis	$\frac{\overline{\mathrm{BENM}}}{\overline{\mathrm{BENL}}}$	$B x$		5	10	ns
${ }^{\text {d }}$ dis	$\overline{\overline{\overline{A B E N M}}} \overline{\overline{\mathrm{ABENL}}}$	$\overline{\mathrm{AB}} \mathrm{x}, \mathrm{ABx}$		5	10	ns

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger See Parameter Measurement Information for load circuit and voltage waveforms.

PARAMETER MEASUREMENT INFORMATION

Figure 1

APPLICATION INFORMATION

NOTE A: The value of this delay element is dependent on the speed of the microprocessor.
Figure 2. Typical Memory Interleave Application

PACKAGING INFORMATION

| Orderable Device | Status $^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74BCT2423AFN | OBSOLETE | PLCC | FN | 68 | TBD | Call TI | Call TI |
| SN74BCT2424AFN | OBSOLETE | PLCC | FN | 68 | TBD | Call TI | Call TI |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Ti has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: $H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance.
 $A_{0}, B_{0}, A B_{0}, \overline{A B}_{0}=$ no change since the controlling latch enable went high
 \dagger The least significant bytes (A7-A0 and B7-B0) and the most significant bytes (A15-A8 and B15-B8) can be independently enabled and disabled, as was illustrated for the $\overline{\mathrm{AB}}$ and AB bytes in the upper function table.

[^1]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger For I/O ports, the parameter I_{IH} and I_{IL} include the offstate output current.
 § Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

