

DGG, DGV, OR DL PACKAGE

FEATURES

- Member of the Texas Instruments Widebus™ Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Checks Parity
- Able to Cascade With a Second SN74ALVCH16903
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages

DESCRIPTION

This 12-bit universal bus driver is designed for 2.3-V to 3.6-V $V_{\rm CC}$ operation.

The SN74ALVCH16903 has dual outputs and can operate as a buffer or an edge-triggered register. In both modes, parity is checked on APAR, which arrives one cycle after the data to which it applies. The YERR output, which is produced one cycle after APAR, is open drain.

MODE selects one of the two data paths. When MODE is low, the device operates as an edge-triggered register. On the positive transition of the clock (CLK) input and when the clock-enable

200,2	(TOP VI	IEW)
		<u> </u>
OE		56 CLK
1Y1	2	55 A
1Y2	3	54 311A/YERREN
GND	4	53 GND
2Y1	5	52 11Y1
2Y2 [6	51 🛛 11Y2
v _{cc} [7	50 🛛 V _{CC}
3Y1 [8	49 🛛 2A
3Y2	9	48 🛛 3A
4Y1 [10	47 🛛 4A
GND	11	46 🛛 GND
4Y2 [12	45 🛛 12A
5Y1	13	44 🛛 12Y1
5Y2	14	43] 12Y2
6Y1	15	42] 5A
6Y2	16	41 🛛 6A
7Y1 [17	40] 7A
GND	18	39 🛛 GND
7Y2 [19	38 🛛 APAR
8Y1 [20	37 🛛 8A
8Y2 [21	36] YERR
v _{cc} [22	35] V _{CC}
9Y1 [23	34 🛛 9A
9Y2	24	33 MODE
GND	25	32 🛛 GND
10Y1	26	31] 10A
10Y2	27	30 PARI/O
PAROE	28	29 CLKEN

(CLKEN) input is low, data set up at the A inputs is stored in the internal registers. On the positive transition of CLK and when CLKEN is high, only data set up at the 9A–12A inputs is stored in their internal registers. When MODE is high, the device operates as a buffer and data at the A inputs passes directly to the outputs. 11A/YERREN serves a dual purpose; it acts as a normal data bit and also enables YERR data to be clocked into the YERR output register.

When used as a single device, parity output enable (PAROE) must be tied high; when parity input/output (PARI/O) is low, even parity is selected and when PARI/O is high, odd parity is selected. When used in pairs and PAROE is low, the parity sum is output on PARI/O for cascading to the second SN74ALVCH16903. When used in pairs and PAROE is high, PARI/O accepts a partial parity sum from the first SN74ALVCH16903.

A buffered output-enable (\overline{OE}) input can be used to place the 24 outputs and \overline{YERR} in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect the internal operation of the device. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC are trademarks of Texas Instruments.

SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

DESCRIPTION (CONTINUED)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

IEXAS

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16903 is characterized for operation from 0°C to 70°C.

FUNCTION TABLES

FUNCTION

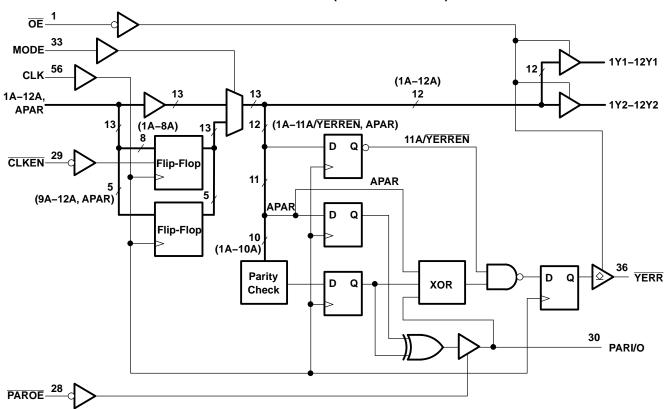
		INPUTS			OUTPUTS				
ŌĒ	MODE	CLKEN	CLK	Α	1Yn ⁽¹⁾ –8Yn ⁽¹⁾	9Yn ⁽¹⁾ –12Yn ⁽¹⁾			
L	L	L	\uparrow	Н	Н	Н			
L	L	L	\uparrow	L	L	L			
L	L	Н	\uparrow	Н	Y ₀	Н			
L	L	Н	\uparrow	L	Y ₀	L			
L	Н	Х	Х	Н	Н	Н			
L	Н	Х	Х	L	L	L			
н	Х	Х	Х	х	Z	Z			

(1) n = 1 or 2

PARITY FUNCTION

		INF	UTS			OUTPUT
ŌĒ	PAROE ⁽¹⁾	11A/YERREN ⁽²⁾	PARI/O	Σ OF INPUTS 1A–10A = H	APAR	YERR
L	Н	L	L	0, 2, 4, 6, 8, 10	L	Н
L	Н	L	L	1, 3, 5, 7, 9	L	L
L	н	L	L	0, 2, 4, 6, 8, 10	Н	L
L	н	L	L	1, 3, 5, 7, 9	Н	Н
L	Н	L	Н	0, 2, 4, 6, 8, 10	L	L
L	н	L	Н	1, 3, 5, 7, 9	L	Н
L	н	L	Н	0, 2, 4, 6, 8, 10	Н	Н
L	Н	L	Н	1, 3, 5, 7, 9	Н	L
Н	Х	Х	Х	Х	Х	Н
L	Х	Н	Х	Х	Х	Н

(1) When used as a single device, PAROE must be tied high.


(2) Valid after appropriate number of clock pulses have set internal register

	INPUTS		OUTPUT
PAROE	Σ OF INPUTS 1A–10A = H	APAR	PARI/O
L	0, 2, 4, 6, 8, 10	L	L
L	1, 3, 5, 7, 9	L	Н
L	0, 2, 4, 6, 8, 10	Н	Н
L	1, 3, 5, 7, 9	Н	L
Н	Х	Х	Z

PARI/O FUNCTION⁽¹⁾

(1) This table applies to the first device of a cascaded pair of SN74ALVCH16903 devices.

SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

LOGIC DIAGRAM (POSITIVE LOGIC)

цij,

TEXAS INSTRUMENTS

www.ti.com

SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GN	ID		±100	mA
		DGG package		81	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DGV package		86	°C/W
		DL package		74	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

				MIN	MAX	UNIT
V _{CC}	Supply voltage			2.3	3.6	V
V	Llich lovel input veltage	V_{CC} = 2.3 V to 2.7 V		1.7		V
V _{IH}	High-level input voltage	V_{CC} = 2.7 V to 3.6 V		2		v
V	Low lovel input veltage	V_{CC} = 2.3 V to 2.7 V			0.7	V
V _{IL}	Low-level input voltage	V_{CC} = 2.7 V to 3.6 V			0.8	v
VI	Input voltage			0	V _{CC}	V
Vo	Output voltage			0	V _{CC}	V
	H High-level output current	$V_{CC} = 2.3 V$	Y port		-12	
		$V_{CC} = 2.7 V$	r poit		-12	mA
I _{OH}		$V_{CC} = 3 V$	PARI/O		-12	ШA
		$v_{\rm CC} = 3 v$	Y port		-24	
		$V_{CC} = 2.3 V$	V port		12	
		$V_{CC} = 2.7 V$	Y port		12	
I _{OL}	Low-level output current		PARI/O		12	mA
		$V_{CC} = 3 V$	Y port		24	
			YERR output		24	
$\Delta t/\Delta v$	Input transition rise or fall rate)		0	10	ns/V
T _A	Operating free-air temperatur	perating free-air temperature			70	°C

 All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST C	CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
		I _{OH} = -100 μA		2.3 V to 3.6 V	V _{CC} - 0.2			
		I _{OH} = -6 mA,	V _{IH} = 1.7 V	2.3 V	2			
	M as a set		V _{IH} = 1.7 V	2.3 V	1.7			
V _{OH}	Y port	I _{OH} = -12 mA	N 0.V	2.7 V	2.2			V
			V _{IH} = 2 V	3 V	2.4			
		I _{OH} = -24 mA,	V _{IH} = 2 V	3 V	2			
	PARI/O	I _{OH} = -12 mA,	V _{IH} = 2 V	3 V	2			
		I _{OL} = 100 μA		2.3 V to 3.6 V			0.2	
		I _{OL} = 6 mA,	V _{IL} = 0.7 V	2.3 V			0.4	
	Y port	1 10 1	V _{IL} = 0.7 V	2.3 V			0.7	
V _{OL}		I _{OL} = 12 mA	V _{IL} = 0.8 V	2.7 V			0.4	V
		I _{OL} = 24 mA,	V _{IL} = 0.8 V	3 V			0.55	
-	PARI/O	I _{OL} = 12 mA,	V _{IL} = 0.8 V	3 V			0.55	
	YERR output	I _{OL} = 24 mA		3 V			0.5	
l _l		$V_{I} = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.7 V		2.3 V	45			
		V _I = 1.7 V		2.3 V	-45			
I _{I(hold)}		V ₁ = 0.8 V		3 V	75			μA
		V ₁ = 2 V		3 V	-75			
		$V_{I} = 0$ to 3.6 V ⁽²⁾		3.6 V			±500	
l _{он}	YERR output	$V_{O} = V_{CC}$		0 to 3.6 V			±10	μΑ
l _{oz} ⁽³⁾		$V_{O} = V_{CC}$ or GND		3.6 V			±10	μΑ
I _{CC}		$V_{I} = V_{CC}$ or GND,	l _O = 0	3.6 V			40	μΑ
ΔI _{CC}		One input at V _{CC} - 0.6 V,	Other inputs at V_{CC} or GND	3 V to 3.6 V			750	μΑ
<u>^</u>	Control inputs			2.2.1/		5.5		- 5
Ci	Data inputs	$V_{I} = V_{CC}$ or GND		3.3 V		5.5		pF
<u>_</u>	YERR output			2.2.1/		5		~ Г
Co	Data outputs	$V_{O} = V_{CC}$ or GND		3.3 V		6		pF
C _{io}	PARI/O	$V_0 = V_{CC}$ or GND		3.3 V		7		pF

(1)

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to (2)

another.

For I/O ports, the parameter I_{OZ} includes the input leakage current. (3)

SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

TIMING REQUIREMENTS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1 and Figure 4)

				V _{CC} = ± 0.2		V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 8 V	UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency				125		125		125	MHz
t _w	Pulse duration, Cl	_K↑		3		3		3		ns
		1A–12A before CLK↑	Register mode	1.7		1.9		1.45		
		1A–10A before CLK↑	Buffer mode	5.9		5.2		4.4		
		up time APAR before CLK↑	Register mode	1.2		1.5		1.3		
t _{su}	Setup time		Buffer mode	4.6		3.6		3.1		ns
		PARI/O before CLK↑	Both modes	2.4		2		1.7		
		11A/YERREN before CLK↑	Buffer mode	2		1.9		1.6		
		CLKEN before CLK↑	Register mode	2.5		2.6		2.2		
		1A–12A after CLK↑	Register mode	0.4		0.25		0.55		
		1A–10A after CLK↑	Buffer mode	0.25		0.25		0.25		
		APAR after CLK↑	Register mode	0.7		0.4		0.7		
	Hold time	APAR aller CLN	Buffer mode	0.25		0.25		0.25		
t _h		PARI/O after CLK1	Register mode	0.25		0.25		0.4		ns
		FARI/U aller ULKT	Buffer mode	0.25		0.25		0.5		
		11A/YERREN after CLK↑	Buffer mode	0.25		0.25		0.4		1
		CLKEN after CLK [↑]	Register mode	0.25		0.5		0.4		

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 and Figure 4)

Р	ARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.2		V _{CC} =	2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
		(INPOT)	(001201)	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}				125		125		125		MHz
	Buffer mode	А	Y	1	4.4		4.2	1.1	3.8	
t _{pd}	Deth medee		YERR	1	5.7		4.9	1.4	4.4	ns
	Both modes	CLK	PARI/O	1.2	8.6		7.9	1.7	6.6	
t _{pd} ⁽¹⁾	Both modes	CLK	PARI/O	1	6.8		5.2	1.3	4.5	ns
t _{pd}	Both modes	MODE	Y	1	5.9		5.8	1.3	4.9	ns
t _{PLH}	De sister se de			1	6.1		5.5	1.2	4.8	
t _{PHL}	Register mode	CLK	Y	1	5.9		4.9	1.2	4.6	ns
	Dette see de s	OE	Y	1.1	6.5		6.4	1.4	5.4	
t _{en}	Both modes	PAROE	PARI/O	1	5.6		6	1	4.8	ns
		ŌE	Y	1	6.4		5.2	1.7	5	
t _{dis}	lis Both modes	PAROE	PARI/O	1	3.2		3.8	1.2	3.8	ns
t _{PLH}			VEDD	1	3.6		4.2	1.9	4	
t _{PHL}	Both modes	ŌĒ	YERR	1.2	5.1		4.9	1.5	4.2	ns

(1) See Figure 2 and Figure 5 for the load specification.

SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

SIMULTANEOUS SWITCHING CHARACTERISTICS⁽¹⁾

(see Figure 3 and Figure 6)

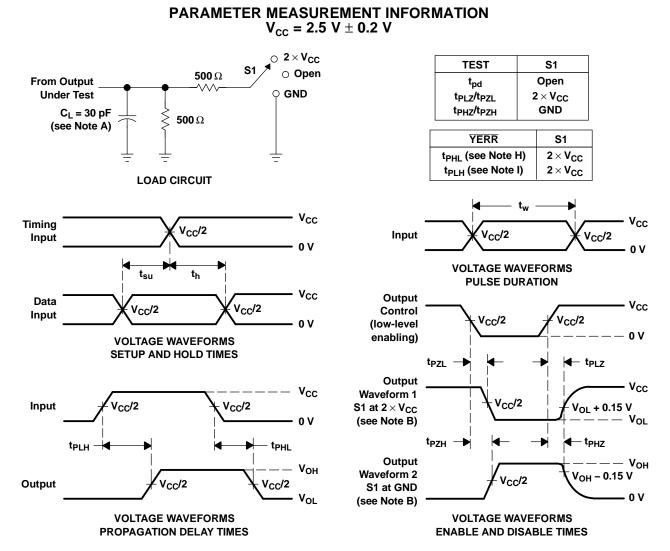
PARAMETER		FROM (INPUT)	TO	V_{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		(INFUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	Degister mede		V	1.8	6.5		6.1	1.8	5	20
t _{PHL}	Register mode	CLK	Ť	1.4	5.9		5.1	1.7	4.5	ns

(1) All outputs switching

OPERATING CHARACTERISTICS FOR BUFFER MODE

 $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS				V _{CC} = 3.3 V ± 0.3 V TYP	UNIT
~	Dower dissipation conscitance	Outputs enabled	C 0	f = 10 MHz	57.5	65	pF	
C _{pd}	Power dissipation capacitance	Outputs disabled	C _L = 0,		15	17.5	рг	


OPERATING CHARACTERISTICS FOR REGISTER MODE

 $T_A = 25^{\circ}C$

	PARAMETER			ONDITIONS	V _{CC} = 2.5 V ± 0.2 V TYP	V _{CC} = 3.3 V ± 0.3 V TYP	UNIT	
<u>_</u>	Dower discinction experitence	Outputs enabled	^ ^	f 10 MU	57	87.5	ρF	
C _{pd}	Power dissipation capacitance	Outputs disabled	C _L = 0,	f = 10 MHz	16.5	34	рг	

SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

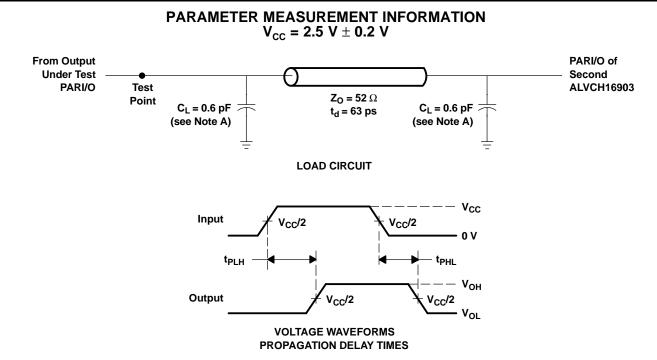
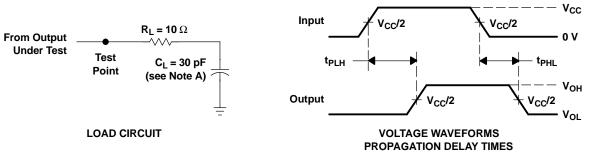
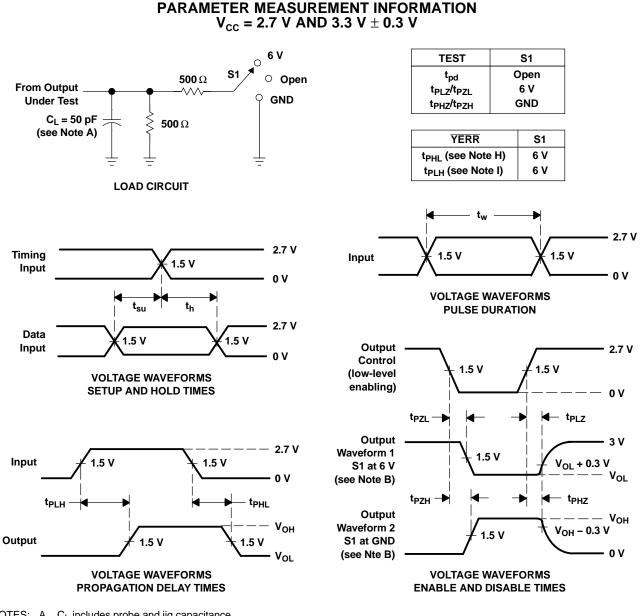

- NOTES: A. C₁ includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H. t_{PHL} is measured at V_{CC}/2.
 - I. t_{PLH} is measured at V_{OL} + 0.15 V.

Figure 1. Load Circuit and Voltage Waveforms


SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - C. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms



- NOTES: A. C_L includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.

Figure 3. Load Circuit and Voltage Waveforms

SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

NOTES: A. C_L includes probe and jig capacitance.

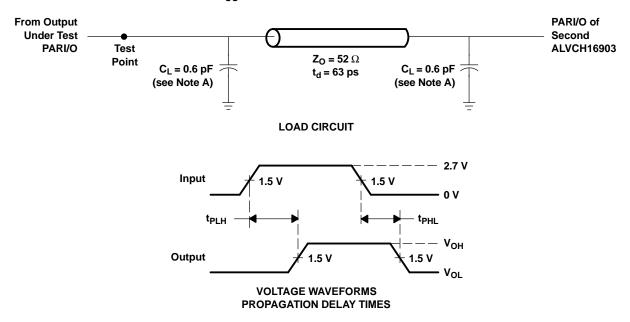
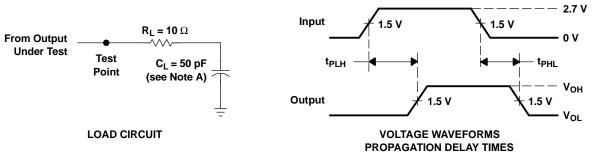

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. t_{PHL} is measured at 1.5 V.
- I. t_{PLH} is measured at V_{OL} + 0.3 V.

Figure 4. Load Circuit and Voltage Waveforms


SCES095D-MARCH 1997-REVISED SEPTEMBER 2004

PARAMETER MEASUREMENT INFORMATION V_{cc} = 2.7 V AND 3.3 V \pm 0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
 - C. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 5. Load Circuit and Voltage Waveforms

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

Figure 6. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
74ALVCH16903DGGRE4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
74ALVCH16903DGGRG4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
74ALVCH16903DLG4	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74ALVCH16903DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74ALVCH16903DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and pa

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

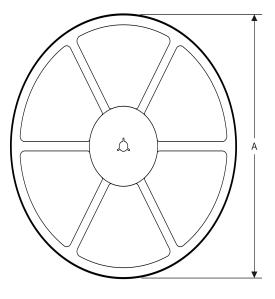
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

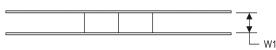
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

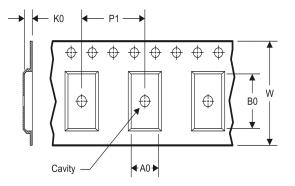
28-Aug-2010


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

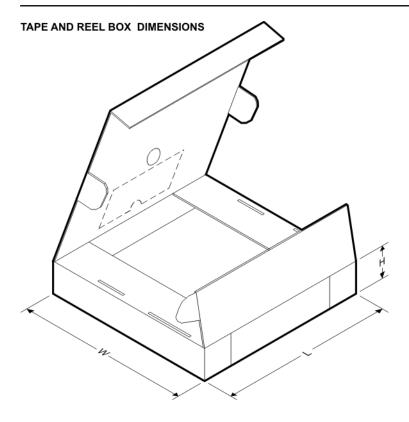
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVCH16903DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

TEXAS INSTRUMENTS

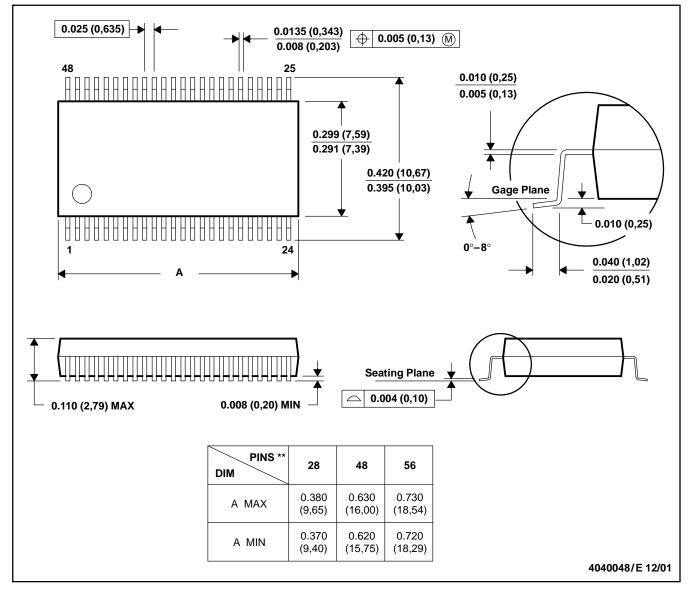
www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCH16903DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0


MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

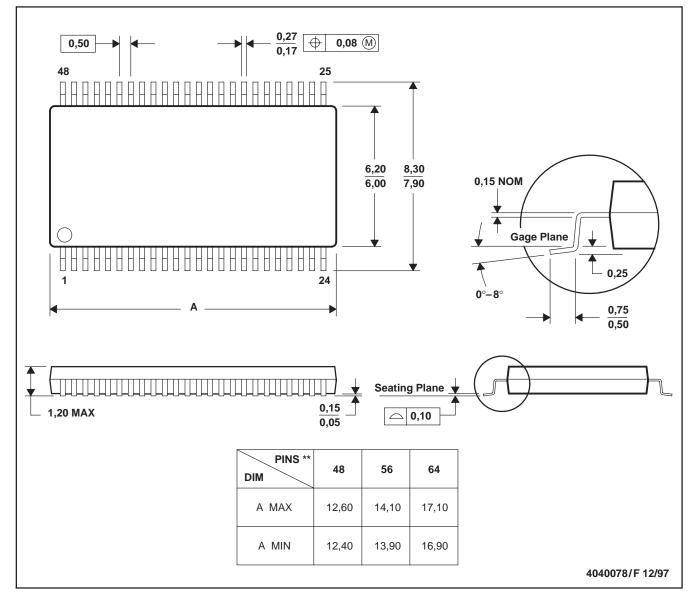
DL (R-PDSO-G**)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated