- Independent Asychronous Inputs and Outputs
- Bidirectional
- 32 Words by 9 Bits
- Programmable Depth
- Data Rates from 0 to 40 MHz
- Fall-Through Time . . . 22 ns Typ
- 3-State Outputs

description

This 576-bit memory uses advanced low-power Schottky IMPACT-X ${ }^{\text {TM }}$ technology and features high speed and fast fall-through times. It consists of two FIFOs organized as 32 words by 9 bits each.

A FIFO memory is a storage device that allows data to be written into and read from its array at independent data rates. These FIFOs are designed to process data at rates from 0 to 40 MHz in a bit-parallel format, word by word.

The SN74ALS2238 consists of bus-transceiver circuits, two 32×9 FIFOs, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal FIFO memories. Enables GAB and GBA are provided to control the transceiver functions. The SAB and SBA control pins are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low level selects real-time data and a high selects stored data. Eight fundamental bus-management functions can be performed as shown in Figure 1.

Data on the A or B data bus, or both, is written into the FIFOs on a low-to-high transition at the load clock (LDCKA or LDCKB) input and is read out on a low-to-high transition at the unload clock (UNCKA or UNCKB) input. The memory is full when the number of words clocked in exceeds, by the defined depth, the number of words clocked out.

N PACKAGE
(TOP VIEW)

FN PACKAGE
(TOP VIEW)

When the memory is full, LDCK signals have no effect on the data residing in memory. When the memory is empty, UNCK signals have no effect.

$\mathbf{3 2 \times 9 \times 2} \mathbf{2}$ ASYNCHRONOUS BIDIRECTIONAL FIRST-IN, FIRST-OUT MEMORY

description (continued)

Status of the FIFO memories is monitored by the $\overline{\text { FULLA, }} \overline{\text { FULLB }}$, EMPTYA, and EMPTYB output flags. The FULLA and $\overline{\text { FULLB }}$ are definable full flags. A high-to-low transition on DAF stores the binary value of A0 through A 4 into a register for use as the value of X . A high-to-low transition on $\overline{\mathrm{DBF}}$ stores the binary value of BO through B4 into a register for use as the value of Y . In this way, the depth of either FIFO can be defined to be one to 32 words deep. The value of X and Y must be defined after power up or the stored value of X and Y will be ambiguous. The $\overline{\text { FULLA }}$ and $\overline{\text { FULLB }}$ outputs are low when their corresponding memories are full and high when the memories are not full.
The EMPTYA and EMPTYB outputs are low when their corresponding memories are empty and high when they are not empty. The status flag outputs are always active.
A low-level pulse on the $\overline{\text { RSTA }}$ or $\overline{\text { RSTB }}$ inputs resets the control pointers on FIFO A or FIFO B and also sets EMPTYA low and FULLA high or EMPTYB low and FULLB high. The outputs are not reset to any specific logic levels. With $\overline{\text { DAF }}$ at a low level, a low-level pulse on $\overline{\text { RSTA }}$ sets FIFO A to a depth of $32-X$, where X is the value stored above. With $\overline{\text { DAF }}$ at a high level, a low level pulse on RSTA sets FIFO A to a depth of 32 words. The depth of FIFO B is set in a similar manner. The first low-to-high transition on LDCKA or LDCKB, either after a reset pulse or from an empty condition, will cause EMPTYA or EMPTYB to go high and the data to appear on the Q outputs. It is important to note that the first word does not have to be unloaded. Cascading is easily accomplished in the word-width direction, but is not possible in the word-depth direction.

The SN74ALS2238 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic symbol \dagger

[^0]logic diagram (positive logic)

Pin numbers shown are for the N package.
$\mathbf{3 2 \times 9 \times 2} \mathbf{~ A S Y N C H R O N O U S ~ B I D I R E C T I O N A L ~ F I R S T - I N , ~ F I R S T - O U T ~ M E M O R Y ~}$

SDAS182 - APRIL 1990

Figure 1. Bus-Management Functions
timing diagram for FIFO A ${ }^{\dagger}$

$\mathbf{3 2 \times 9 \times 2} \mathbf{~ A S Y N C H R O N O U S ~ B I D I R E C T I O N A L ~ F I R S T - I N , ~ F I R S T - O U T ~ M E M O R Y ~}$

SELECT-MODE CONTROL TABLE			
CONTROL OPERATION SAB SBA A BUS B BUS L L Real-time B to A bus Real-time A to B bus L H FIFO B to A bus Real-time A to B bus H L Real-time B to A bus FIFO A to B bus H H FIFO B to A bus FIFO A to B bus			

OUTPUT-ENABLE CONTROL TABLE				
CONTROL		OPERATION		
GAB	GBA	A BUS	B BUS	
H	H	A bus enabled	B bus enabled	
L	H	A bus enabled	Isolation/input to B bus	
H	L	Isolation/input to A bus	B bus enabled	
L	L	Isolation/input to A bus	Isolation/input to B bus	

programming procedure for depth of FIFO A \dagger

Program:
Step 1. With $\overline{R S T A}$ at a high level, take $\overline{\text { DAF }}$ from a high level to a low level. The high-to-low transition on $\overline{D A F}$ stores the binary value of AO-A4 for use as the value of X in defining the depth of FIFO A.
Step 2. With $\overline{\mathrm{DAF}}$ held low, pulse the $\overline{\mathrm{RSTA}}$ signal low. On the low-to-high transition of $\overline{\mathrm{RSTA}}$, FIFO A is set to a depth of $32-\mathrm{X}$, where X is the value of $\mathrm{A} 0-\mathrm{A} 4$ stored above.
Step 3. To redefine the depth of FIFO A to 32 words, hold $\overline{\text { DAF }}$ at a high level and pulse the $\overline{\text { RSTA }}$ signal low.
\dagger The programming procedures used to define the depth of FIFO B are the same as the procedure above.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Input voltage: Control inputs .. 7 V
I/O ports .. 5.5 V
Voltage applied to a disabled 3-state output ... 5.5 V

Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum junction temperature .. $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 1)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
IOH	High-level output current	A or B ports			-15	mA
		Status flags			-0.4	
${ }^{\text {IOL }}$	Low-level output current	A or B ports			24	mA
		Status flags			8	
${ }^{\text {f clock }}$	Clock frequency	LDCKA or LDCKB	0		40	MHz
		UNCKA or UNCKB	0		40	
$t_{\text {w }}$	Pulse duration	$\overline{\text { RSTA }}$ or $\overline{\text { RSTB }}$ low	17			ns
		LDCKA or LDCKB low	12.5			
		LDCKA or LDCKB high	10			
		UNCKA or UNCKB low	12.5			
		UNCKA or UNCKB high	10			
		$\overline{\overline{D A F}}$ or $\overline{\mathrm{DBF}}$ high	10			
$t_{\text {su }}$	Setup time	Data before LDCKA or LDCKB \uparrow	7			ns
		Define depth: D4-D0 before $\overline{\overline{D A F}}$ or $\overline{\mathrm{DBF}} \downarrow$	6			
		Define depth: $\overline{\mathrm{DAF}}$ or $\overline{\mathrm{DBF}} \downarrow$ before $\overline{\mathrm{RSTA}}$ or $\overline{\mathrm{RSTB}} \uparrow$	45			
		Define depth (32): $\overline{\mathrm{DAF}}$ or $\overline{\overline{\mathrm{BEF}}}$ high before $\overline{\mathrm{RSTA}}$ or $\overline{\mathrm{RSTB}} \uparrow$	32			
			5			
th	Hold time	Data after LDCKA or LDCKB \uparrow	3			ns
		Define depth: D4-D0 after $\overline{\mathrm{DAF}}$ or $\overline{\mathrm{DBF}} \downarrow$	4			
		Define depth: $\overline{\mathrm{DAF}}$ or $\overline{\mathrm{DBF}}$ low after $\overline{\mathrm{RSTA}}$ or $\overline{\mathrm{RSTB}} \uparrow$	0			
		Define depth (32): $\overline{\mathrm{DAF}}$ or $\overline{\mathrm{DBF}}$ high after $\overline{\mathrm{RSTA}}$ or $\overline{\mathrm{RSTB}} \uparrow$	0			
		LDCKA or LDCKB (inactive) after $\overline{\mathrm{RSTA}}$ or $\overline{\mathrm{RSTB}} \uparrow$	5			
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

NOTE 1: To ensure proper operation of this high-speed FIFO device, it is necessary to provide a clean signal to the LDCKA or LDCKB and UNCKA or UNCKB clock inputs. Any excessive noise or glitching on the clock inputs (which violates the $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$, or minimum pulse duration limits) can cause a false clock or improper operation of the internal read and write pointers.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYPt	MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\boldsymbol{I}=-18 \mathrm{~mA}$			-1.2	V
VOH	Status flags	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
	A or B ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.2		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$	2			
VOL	A or B ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$		0.35	0.5	
	Status flags	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=8 \mathrm{~mA}$		0.35	0.5	
1	$\overline{\mathrm{DAF}}, \overline{\mathrm{DBF}}, \overline{\mathrm{RSTA}}, \overline{\mathrm{RSTB}}, \mathrm{GAB}, \mathrm{GBA}, \mathrm{SAB}$, SBA, LDCKA, LDCKB, UNCKA, UNCKB	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}=7 \mathrm{~V}$			0.1	mA
	A or B ports					0.2	
IIH	$\overline{\mathrm{DAF}}, \overline{\mathrm{DBF}}, \overline{\mathrm{RSTA}}, \overline{\mathrm{RSTB}}, \mathrm{GAB}, \mathrm{GBA}, \mathrm{SAB}$, SBA, LDCKA, LDCKB, UNCKA, UNCKB	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
	A or B ports \ddagger					40	
IIL	$\overline{\mathrm{DAF}}, \overline{\mathrm{DBF}}, \overline{\mathrm{RSTA}}, \overline{\mathrm{RSTB}}, \mathrm{GAB}, \mathrm{GBA}, \mathrm{SAB}$, SBA, LCKA, LDCKB, UNCKA, UNCKB	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	V I $=0.4 \mathrm{~V}$			-0.2	mA
	A or B ports \ddagger					-0.4	
Io§	A or B ports \ddagger	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-20		-130	mA
	Status flags			-15		-100	
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			190	350	mA

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameters I_{IH} and $\mathrm{I}_{I L}$ include the offstate output current.
§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega \end{aligned}$			UNIT
			MIN	TYP \dagger	MAX	
$f_{\text {max }}$	LDCK, UNCK		40			MHz
$t_{\text {tpd }}$	LDCKA \uparrow, LDCKB \uparrow	B, A	7	22	33	ns
	UNCKA \uparrow, UNCKB \uparrow		7	20	29	
tPLH	LDCKA \uparrow, LDCKB \uparrow	EMPTYA, $\overline{\text { EMPTYB }}$	5	12	22	ns
tPHL	UNCKA \uparrow, UNCKB \uparrow		5	12	22	
tPHL	$\overline{\mathrm{RSTA}} \downarrow, \overline{\mathrm{RSTB}} \downarrow$	$\overline{\text { EMPTYA, EMPTYB }}$	5	12	22	ns
tPHL	LDCKA \uparrow, LDCKB \uparrow	$\overline{\text { FULLA, }} \overline{\text { FULLB }}$	5	12	22	ns
tPLH	UNCKA \uparrow, UNCKB \uparrow	$\overline{\text { FULLA }}$, $\overline{\text { FULLB }}$	5	12	23	ns
	$\overline{\mathrm{RSTA}} \downarrow, \overline{\mathrm{RSTB}} \downarrow$		6	15	28	
$t_{\text {tpd }}$	SAB, SBA \ddagger	B, A	2	11	18	ns
	A/B		2	8	15	
$\mathrm{t}_{\text {en }}$	GBA, GAB	A, B	2	6	15	ns
$\mathrm{t}_{\text {dis }}$	GBA, GAB	A, B	1	5	12	ns

[^1]
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES:
A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
 Pin numbers shown are for the N package.

[^1]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

