

SLLS667B-FEBRUARY 2006-REVISED JUNE 2008

3.3 V FULL-DUPLEX RS-485/RS-422 DRIVERS AND BALANCED RECEIVERS

FEATURES

Designed for INTERBUS Applications

UMENTS

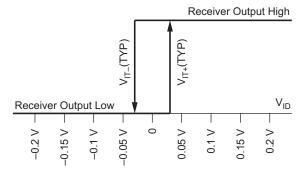
- Designed for RS-422 and RS-485 Networks
- Balanced Receiver Thresholds
- 1/2 Unit-Load (up to 64 nodes on the bus)
- Bus-Pin ESD Protection 15 kV HBM
- Bus-Fault Protection of –7 V to 12 V
- Thermal Shutdown Protection
- Power-Up/Down Glitch-free Bus Inputs and Outputs
- High Input Impedance With Low V_{CC}
- Monotonic Outputs During Power Cycling
- 5-V Tolerant Inputs

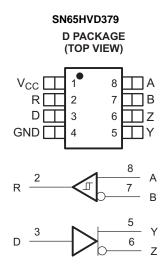
APPLICATIONS

- Digital Motor Control
- Utility Meters
- Chassis-to-Chassis Interconnections
- Electronic Security Stations
- Industrial, Process, and Building Automation
- Point-of-Sale (POS) Terminals and Networks
- DTE/DCE Interfaces

DESCRIPTION

The SN65HVD379 is a differential line driver and differential-input line receiver that operates with a 3.3-V power supply. Each driver and receiver has separate input and output pins for full-duplex bus communication designs. They are designed for balanced transmission lines and interoperation with ANSI TIA/EIA-485A, TIA/EIA-422-B, ITU-T v.11, and ISO 8482:1993 standard-compliant devices.


These differential bus drivers and receivers are monolithic, integrated circuits designed for full-duplex bi-directional data communication on multipoint bus-transmission lines at signaling rates⁽¹⁾ up to 25 Mbps. The SN65HVD379 is fully enabled with no external enabling pins.


The 1/2 unit load receiver has a higher receiver input resistance. This results in lower bus leakage currents over the common-mode voltage range, and reduces the total amount of current that an RS-485 driver is forced to source or sink when transmitting.

The balanced differential receiver input threshold makes the SN65HVD379 more compatible with fieldbus requirements that define an external failsafe structure.

 The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

BALANCED RECEIVER INPUT THRESHOLDS

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

SIGNALING RATE	UNIT LOADS	PART NUMBER ⁽¹⁾	SOIC MARKING
25 Mbps	1/2	SN65HVD379	

(1) These are The D package is available taped and reeled. Add an R suffix to the part number (ie. SN65HVD379DR).

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1) (2)

		UNIT
V_{CC}	Supply voltage range	-0.3 V to 6 V
V_A, V_B, V_Y, V_Z	Voltage range at any bus terminal (A, B, Y, Z)	–9 V to 14 V
V _{TRANS}	Voltage input, transient pulse through 100 Ω. See Figure 8 (A, B, Y, Z) ⁽³⁾	–50 to 50 V
V _I	Input voltage range (D, DE, RE)	-0.5 V to 7 V
P _{CONT}	Continuous total power dissipation	Internally limited ⁽⁴⁾
Io	Output current (receiver output only, R)	11 mA

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range unless otherwise noted

PARAME	PARAMETER			NOM	MAX	UNIT
V _{CC}	Supply voltage		3		3.6	V
V_{I} or V_{IC}	Voltage at any bus termina	I (separately or common mode)	-7 ⁽¹⁾		12	V
1/t _{UI}	Signaling rate	SN65HVD379			25	Mbps
R_L	Differential load resistance		54	60		Ω
V_{IH}	High-level input voltage	D	2		V_{CC}	
V_{IL}	Low-level input voltage	D	0		8.0	V
V_{ID}	Differential input voltage		-12		12	
	High lovel output ourrent	Driver	-60			mA
ІОН	High-level output current	Receiver	-8			ША
I _{OL} Low-level output current		Driver			60	mA
		Receiver			8	ША
T _A	Ambient still-air temperature				85	С

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽³⁾ This tests survivability only and the output state of the receiver is not specified.

⁽⁴⁾ The Thermal shutdown protection circuit internally limits the continuous total power dissipation. Thermal shutdown typically occurs when the junction temperature reaches 165C.

www.ti.com

ELECTROSTATIC DISCHARGE PROTECTION

PARAMETER	TEST CONDITIONS	MIN TYP ⁽¹⁾ MAX	UNIT
Human body model	Bus terminals and GND	16	
Human body model ⁽²⁾	All pins	4	kV
Charged-device-model ⁽³⁾	All pins	1	

- (1) All typical values at 25C with 3.3-V supply.
- (2) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
- (3) Tested in accordance with JEDEC Standard 22, Test Method C101.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

PARAMETER		TEST COND	TEST CONDITIONS		TYP ⁽¹⁾	MAX	UNIT			
V _{I(K)}	Input clamp voltage		I _I = -18 mA	I _I = -18 mA						
			I _O = 0		2		V _{CC}			
157			$R_L = 54 \Omega$, See Figure	1 ⁽²⁾ (RS-485)	1.5	2.0				
$ V_{OD(SS)} $	Steady-state different	iai output voitage	$R_L = 100 \Omega$, See Figure	e 1 (RS-422)	2	2.3				
			$V_{\text{test}} = -7 \text{ V to } 12 \text{ V, Se}$	ee Figure 2	1.5					
$\Delta V_{OD(SS)} $	Change in magnitude differential output volt		$R_L = 54 \Omega$, See Figure	1 and Figure 2	-0.2		0.2	٧		
V _{OD(RING)}	Differential output volt undershoot	age overshoot and		$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 5 (Figure 3 for definitions)			10% ⁽³⁾			
V _{OC(PP)}	Peak-to-peak commo	n-mode output voltage				0.5				
V _{OC(SS)}	Steady-state common-mode output voltage		See Figure 3	1.6		2.3				
$\Delta V_{OC(SS)}$	Change in steady-state voltage	te common-mode output	- Coo rigaro c		-0.05		0.05			
11	High installance state		$V_{CC} = 0 \text{ V}, V_Z \text{ or } V_Y = 12 \text{ V},$ Other input at 0 V				90	^		
$I_{Z(Z)}$ or $I_{Y(Z)}$	High-impedance state output current		$V_{CC} = 0 \text{ V}, V_Z \text{ or } V_Y = 0$ Other input at 0 V	–7 V,	-10			μΑ		
I _{Z(S)} or	Object singuit sutput su	V_Z or $V_Y = -7$ Other input		V_Z or V_Y =		Other input	-250		250	A
I _{Y(S)}	Short-circuit output current ⁽⁴⁾ V _Z or \		V_Z or $V_Y = 12 V$				250	mA		
I	Input current	D	$V_{I} = 0 \text{ or } V_{I} = 2.0$		0		100	Α		
C _(OD)	Differential output capacitance		$V_{OD} = 0.4 \sin (4E6\pi t) + V_{CC} \text{ at } 0 \text{ V}$	+ 0.5 V,		16		pF		

- (1) All typical values are at 25C and with a 3.3-V supply.
- (2) V_{CC} is 3.3 Vdc 5%
- (3) 10% of the peak-to-peak differential-output voltage swing, per TIA/EIA-485.
- (4) Under some conditions of short-circuit to negative voltages, output currents exceeding the ANSI TIA/EIA-485-A maximum current of 250 mA may occur. Continuous exposure may affect device reliability.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		4	10	10	no
t _{PHL}	Propagation delay time, high-to-low-level output		4		18	ns
t _r	Differential output signal rise time	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 5	2.5		12	20
t _f	Differential output signal fall time		2.5		12	ns
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})			0.6		ns
t _{sk(pp)} (2)	Part-to-part skew			1		ns

(1) All typical values are at 25C and with a 3.3-V supply.

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

Copyright © 2006–2008, Texas Instruments Incorporated

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

PARAMETER		TEST CONDITIO	NS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{IT+}	Positive-going differential input threshold voltage	$I_O = -8 \text{ mA}$				0.2	
V _{IT-}	Negative-going differential input threshold voltage	I _O = 8 mA		-0.2			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT-})				50		mV
V _O Output voltage	Output voltage	$V_{ID} = 200 \text{ mV}, I_O = -8 \text{ mA}, \text{ See Figure 7}$		2.4			V
v _O	Output voltage	$V_{ID} = -200 \text{ mV}, I_{O} = 8 \text{ mA}, Se$			0.4	V	
		V_A or $V_B = 12 V$			0.20	0.35	
I _A or	Puo input gurrent	V_A or $V_B = 12 \text{ V}$, $V_{CC} = 0 \text{ V}$	Other input		0.24	0.40	mA
I _B	Bus input current	V_A or $V_B = -7 V$	at 0 V	-0.35	-0.18		ША
		V_A or $V_B = -7 V$, $V_{CC} = 0 V$		-0.25	-0.13		
C _{ID}	Differential input capacitance	V _{ID} = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V			15		рF
I _{CC}	Supply current	D at 0 V or V _{CC} and No Load				2.1	mA

⁽¹⁾ All typical values are at 25C and with a 3.3-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V, } C_L = 15 \text{ pF,}$		26	45	20
t _{PHL}	Propagation delay time, high-to-low-level output	See Figure 7		20	45	ns
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})				7	
t _{sk(pp)}	Part-to-part skew ⁽²⁾			5		
t _r	Output signal rise time				5	
t _f	Output signal fall time				6	

⁽¹⁾ All typical values are at 25C and with a 3.3-V supply

DEVICE POWER DISSIPATION - PD

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
P_D	Device power dissipation	$R_L=60$, $C_L=50$ pF, Input to D a 50% duty cycle square wave at indicated signaling rate $T_A=85C$		197	mW

FUNCTION TABLES

	DRIVER		RECEIVER			
INPUT	OUTPUTS		DIFFERENTIAL INPUTS	OUTPUTS		
D	Υ	Z	$V_{ID} = V_A - V_B$	R		
Н	Н	L	V _{ID} ≤ -0.2 V	L		
L	L	Н	−0.2 V < V _{ID} < 0.2 V	?		
Open	L	Н	0.2 V ≤ V _{ID}	Н		

⁽²⁾ $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

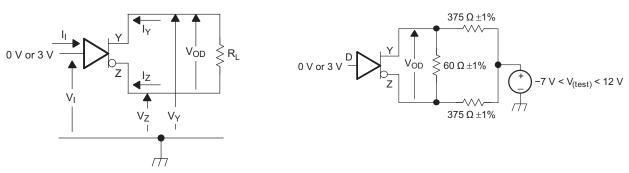


Figure 1. Driver V_{OD} Test Circuit and Voltage and Current Definitions

Figure 2. Driver V_{OD} With Common-Mode Loading Test Circuit

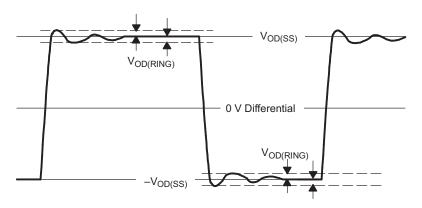


Figure 3. $V_{\text{OD(RING)}}$ Waveform and Definitions

 $V_{OD(RING)}$ is measured at four points on the output waveform, corresponding to overshoot and undershoot from the $V_{OD(H)}$ and $V_{OD(L)}$ steady state values.

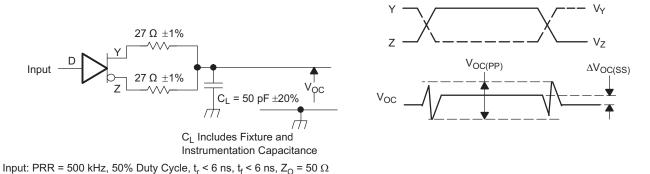
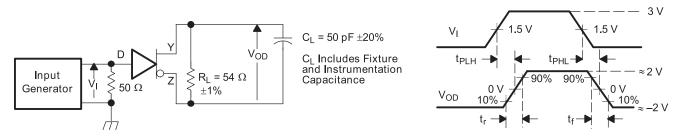



Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Copyright © 2006–2008, Texas Instruments Incorporated

PARAMETER MEASUREMENT INFORMATION (continued)

Generator: PRR = 500 kHz, 50% Duty Cycle, $t_{\rm r}$ < 6 ns, $t_{\rm f}$ < 6 ns, $Z_{\rm O}$ = 50 Ω

Figure 5. Driver Switching Test Circuit and Voltage Waveforms

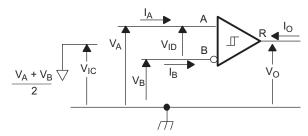


Figure 6. Receiver Voltage and Current Definitions

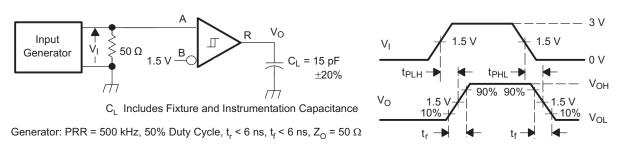


Figure 7. Receiver Switching Test Circuit and Voltage Waveforms

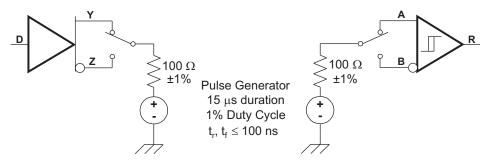
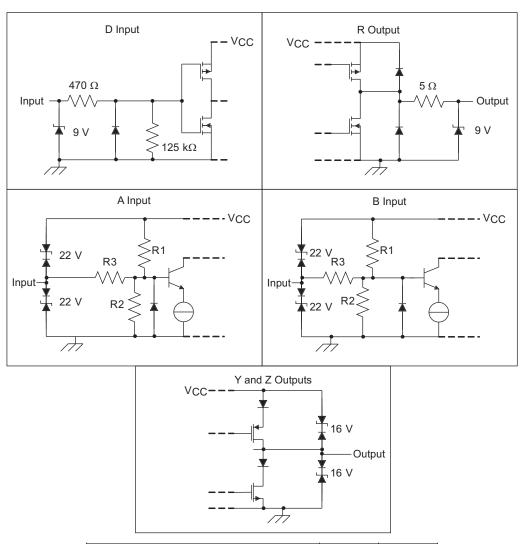



Figure 8. Test Circuit, Transient Over Voltage Test

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

	R1/R2	R3
SN65HVD379	9 kΩ	45 kΩ

TYPICAL CHARACTERISTICS

VS BUS INPUT VOLTAGE 250 $T_{\Delta} = 25^{\circ}C$ $\frac{\Lambda}{RE} = 0 \text{ V}$ 200 DE = 0 V 150 I_I - Bus Input Current - µA 100 50 $V_{CC} = 3.3 \text{ V}$ 0 -50 -100 -150 -200 -4 5 14 V_I - Bus Input Voltage - V Figure 10. **DRIVER HIGH-LEVEL OUTPUT CURRENT**

BUS INPUT CURRENT

DRIVER LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 0.14 V_{CC} = 3.3 V DE = V_{CC} 0.12 IoL - Driver Low-Level Output Current - A D = 0 V0.1 0.08 0.06 0.04 0.02 0 -0.020 1.5 2 V_{OL} - Low-Level Output Voltage - V Figure 11.

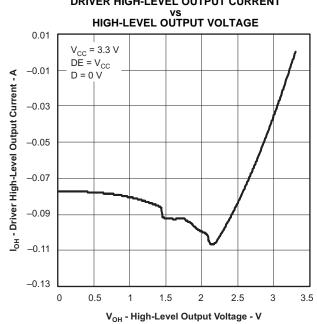
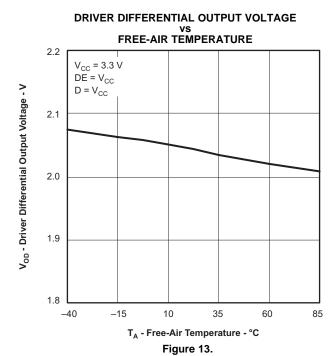
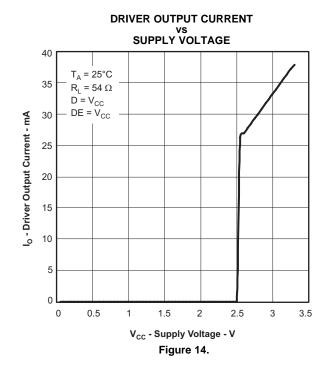




Figure 12.

TYPICAL CHARACTERISTICS (continued)

.com 16-Jun-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65HVD379D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD379DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD379DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD379DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

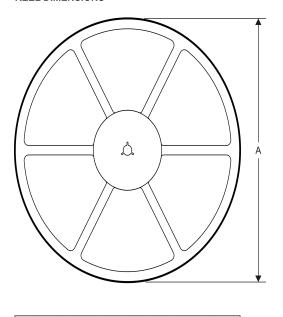
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

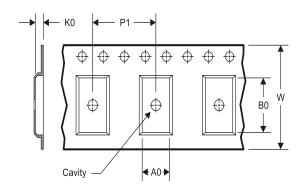
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

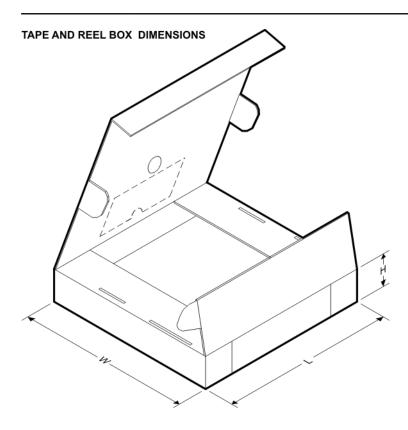
PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

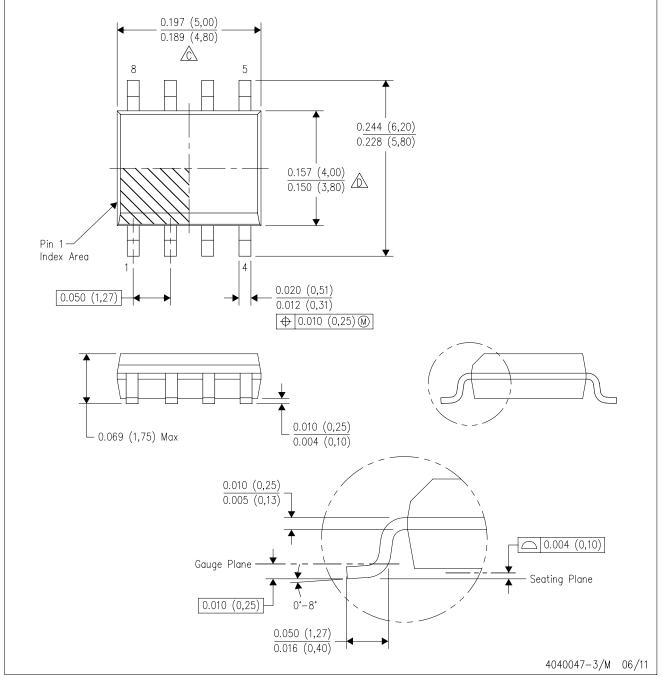

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65HVD379DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 14-Jul-2012

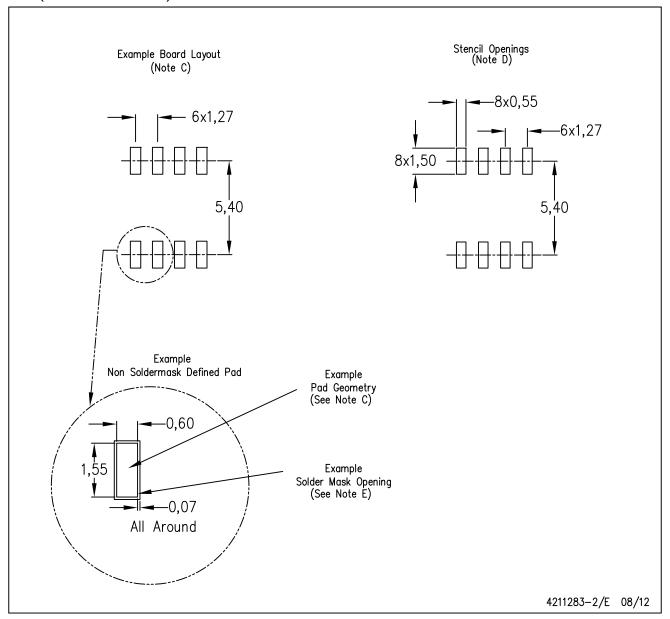


*All dimensions are nominal

Device		Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	SN65HVD379DR	SOIC	D	8	2500	367.0	367.0	35.0	

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps

DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface Medical www.ti.com/medical interface.ti.com Logic logic.ti.com Security www.ti.com/security

Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>