SLLS889B - JUNE 2008-REVISED SEPTEMBER 2011

EMC-OPTIMIZED HIGH SPEED CAN TRANSCEIVER

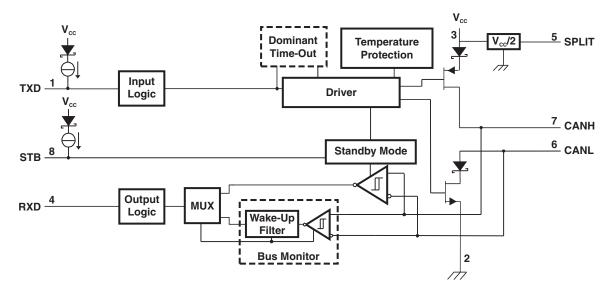
Check for Samples: SN65HVD1040A-Q1

FEATURES

- Qualified for Automotive Applications
- Improved Drop-In Replacement for TJA1040
- Meets or Exceeds the Requirements of ISO 11898-5
- GIFT/ICT Compliant
- ESD Protection up to ±12 kV (Human-Body Model) on Bus Pins
- Low-Current Standby Mode With Bus Wake-Up, <12 µA Max
- High Electromagnetic Compliance (EMC)
- Bus-Fault Protection of –27 V to 40 V
- Dominant Time-Out Function
- Thermal Shutdown Protection
- Power-Up/Down Glitch-Free Bus Inputs and Outputs
 - High Input Impedance With Low V_{CC}
 - Monotonic Outputs During Power Cycling

APPLICATIONS

- GMW3122 Dual-Wire CAN Physical Layer
- SAE J2284 High-Speed CAN for Automotive Applications
- SAE J1939 Standard Data Bus Interface
- ISO 11783 Standard Data Bus Interface
- NMEA 2000 Standard Data Bus Interface


DESCRIPTION

The SN65HVD1040A meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN). The device is qualified for use in automotive applications.

As a CAN transceiver, this device provides differential transmit capability to the bus and differential receive capability to a CAN controller at signaling rates up to 1 megabit per second (Mbps)⁽¹⁾.

(1) The signaling rate of a line is the number of voltage transitions that are made per second, expressed in the units bps (bits per second).

FUNCTIONAL BLOCK DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

Designed for operation in especially harsh environments, the SN65HVD1040A features cross-wire, over-voltage, and loss of ground protection from –27 V to 40 V, over-temperature protection, a –12-V to 12-V common-mode range, and withstands voltage transients according to ISO 7637.

STB (pin 8) provides two different modes of operation: high-speed mode or low-current standby mode. The high-speed mode of operation is selected by connecting STB (pin 8) to ground.

If a high logic level is applied to the STB pin of the SN65HVD1040A, the device enters a low-current standby mode, while the receiver remains active in a low-power bus-monitor standby mode.

In the low-current standby mode, a dominant bit greater than 5 μ s on the bus is passed by the bus-monitor circuit to the receiver output. The local protocol controller may then reactivate the device when it needs to transmit to the bus.

A dominant time-out circuit in the SN65HVD1040A prevents the driver from blocking network communication with a hardware or software failure. The time-out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is then reset by the next rising edge on TXD.

SPLIT (pin 5) is available as a $V_{CC}/2$ common-mode bus voltage bias for a split-termination network (see application information).

ORDERING INFORMATION⁽¹⁾

PART NUMBER	PACKAGE ⁽²⁾	MARKED AS	ORDERING NUMBER
SN65HVD1040A-Q1	1040A-Q1 SOIC-8 1040AQ		SN65HVD1040AQDRQ1 (reel)

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

ABSOLUTE MAXIMUM RATINGS(1) (2)

		VALUE
V_{CC}	Supply voltage range	–0.3 V to 6 V
	Voltage range at bus terminals (CANH, CANL, SPLIT)	–27 V to 40 V
Io	Receiver output current	20 mA
V_{I}	Voltage input range, ISO 7637 transient pulse (3) (CANH, CANL)	–150 V to 100 V
VI	Voltage input range (TXD, STB)	–0.3 V to 6 V
T_{J}	Junction temperature range	-40°C to 150°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
- (3) Tested in accordance with ISO 7637 test pulses 1, 2, 3a, 3b per IBEE system level test (Pulse 1 = -100 V, Pulse 2 = 100 V, Pulse 3a = -150 V, Pulse 3b = 100 V). If dc may be coupled with ac transients, externally protect the bus pins within the absolute maximum voltage range at any bus terminal. This device has been tested with dc bus shorts to +40 V with leading common-mode chokes. If common-mode chokes are used in the system and the bus lines may be shorted to dc, ensure that the choke type and value in combination with the node termination and shorting voltage either will not create inductive flyback outside of voltage maximum specification or use an external transient-suppression circuit to protect the transceiver from the inductive transients.

ELECTROSTATIC DISCHARGE PROTECTION

PARAMETER		TEST CONDITIONS			
		CANH and CANL (3)	±12 kV		
	Human-Body Model (2)	SPLIT ⁽⁴⁾	±10 kV		
Electrostatic discharge (1)		All pins	±4 kV		
	Charged-Device Model (5)	All pins	±1.5 kV		
	Machine Model (6)		±200 V		

- (1) All typical values at 25°C.
- (2) Tested in accordance JEDEC Standard 22, Test Method A114E.
- (3) Test method based upon JEDEC Standard 22 Test Method A114E, CANH and CANL bus pins stressed with respect to each other and
- (4) Test method based upon JEDEC Standard 22 Test Method A114E, SPLIT pin stressed with respect to GND.
- (5) Tested in accordance JEDEC Standard 22, Test Method C101C.
- (6) Tested in accordance JEDEC Standard 22, Test Method A115A.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
V _{CC}	Supply voltage		4.75	5.25	V
V _I or V _{IC}	Voltage at any bus terminal (separately or com	nmon mode)	-12	12	V
V _{IH}	High-level input voltage	TXD, STB	2	5.25	V
V _{IL}	Low-level input voltage	TXD, STB	0	0.8	V
V_{ID}	Differential input voltage		-6	6	V
	High level autout aumont	Driver	-70		Λ
IOH	High-level output current	Receiver	-2		mA
	Landard and a decided	Driver		70	Δ
I _{OL}	DL Low-level output current	Receiver		2	mA
T _A	Operating free-air temperature range	See Thermal Characteristics table	-40	125	°C

SUPPLY CURRENT

over recommended operating conditions including operating free-air temperature range (unless otherwise noted)

	PARAM	ETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
		Standby mode	STB at V _{CC} , V _I = V _{CC}		6	12	μΑ
I_{CC}	5-V supply current	Dominant	$V_I = 0 \text{ V}$, 60- Ω load, STB at 0 V		50	70	
		Recessive	V _I = V _{CC} , No load, STB at 0 V		6	10	mA

(1) All typical values are at 25°C with a 5-V supply.

DEVICE SWITCHING CHARACTERISTICS

over recommended operating conditions, $T_A = -40^{\circ}C$ to 125°C (unless otherwise noted)

	PARAMETER		MIN	MAX	UNIT
t _{d(LOOP1)}	Total loop delay, driver input to receiver output, recessive to dominant	STB at 0 V, See	90	230	ns
t _{d(LOOP2)}	Total loop delay, driver input to receiver output, dominant to recessive	Figure 9	90	230	ns

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions, $T_A = -40$ °C to 125°C(unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Due suitant valta as (de asia sat)	CANH	$V_I = 0 \text{ V}$, STB at 0 V, $R_I = 60 \Omega$,	2.9	3.4	4.5	V
$V_{O(D)}$	Bus output voltage (dominant)	CANL	See Figure 1 and Figure 2	0.8		1.75	V
$V_{O(R)}$	Bus output voltage (recessive)		V_I = 3 V, STB at 0 V, R_L = 60 Ω , See Figure 1 and Figure 2	2	2.5	3	V
V _O	Bus output voltage (standby mode))	STB at Vcc, $R_L = 60 \Omega$, See Figure 1 and Figure 2	-0.1		0.1	V
V	Differential output voltage (domina	a+\	V_I = 0 V, R_L = 60 Ω , STB at 0 V, See Figure 1, Figure 2, and Figure 3	1.5		3	V
$V_{OD(D)}$	Differential output voltage (dominal	iii)	V_I = 0 V, R_L = 45 Ω , STB at 0 V, See Figure 1, Figure 2, and Figure 3	1.4		3	V
$V_{OD(R)}$	Differential output voltage (recessive	/e)	V_I = 3 V, STB at 0 V, R_L = 60 Ω , See Figure 1 and Figure 2	-0.012		0.012	V
- ()			V _I = 3 V, STB at 0 V, No load	-0.5		0.05	
V_{SYM}	Output symmetry (dominant or rece $(V_{O(CANH)} + V_{O(CANL)})$	essive)	STB at 0 V, $R_L = 60 \Omega$, See Figure 13	0.9 V _{CC}	V_{CC}	1.1 V _{CC}	V
V _{OC(ss)}	Steady-state common-mode output	t voltage	STB at 0 V, $R_L = 60 \Omega$, See Figure 8	2	2.5	3	V
$\Delta V_{OC(ss)}$	Change in steady-state common-moutput voltage	node	STB at 0 V, $R_L = 60 \Omega$, See Figure 8		30		mV
I _{IH}	High-level input current, TXD input		V _I at V _{CC}	-2		2	μA
I _{IL}	Low-level input current, TXD input		V _I at 0 V	-50		-10	μA
I _{O(off)}	Power-off TXD output current		V _{CC} at 0 V, TXD at 5 V			1	μA
			V _{CANH} = -12 V, CANL open, See Figure 11	-120	-85		
	Chart sires it stoods state autout su		V _{CANH} = 12 V, CANL open, See Figure 11		0.4	1	^
I _{OS(ss)}	Short-circuit steady-state output current	V _{CANL} = -12 V, CANH open, See Figure 11	-1	-0.6		mA	
		V _{CANL} = 12 V, CANH open, See Figure 11		75	120		
Co	Output capacitance		See receiver input capacitance				

⁽¹⁾ All typical values are at 25°C with a 5-V supply.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions, $T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted)

	i 9 , A	` ,				
	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high level output	STB at 0 V, See Figure 4	25	65	120	ns
t _{PHL}	Propagation delay time, high-to-low level output	STB at 0 V, See Figure 4	25	45	120	ns
t _r	Differential output signal rise time	STB at 0 V, See Figure 4		25		ns
t _f	Differential output signal fall time	STB at 0 V, See Figure 4		45		ns
t _{en}	Enable time from standby mode to dominant	See Figure 7			10	μs
t _(dom)	Dominant time out (2)	↓V _I , See Figure 10	300	450	700	μs

⁽¹⁾ All typical values are at 25°C with a 5-V supply.

Minimum Bit Rate = 11/ $t_{(dom)}$ = 11 bits / 300 μ s = 37 kbps

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions, $T_A = -40^{\circ}C$ to 125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage, high-speed mode	STB at 0 V, See Table 3		800	900	mV
V _{IT} _	Negative-going input threshold voltage, high-speed mode	STB at 0 V, See Table 3	500	650		mV
V_{hys}	Hysteresis voltage (V _{IT+} – V _{IT-})		100	125		mV
V _{IT}	Input threshold voltage, standby mode	STB at V _{CC}	500		1150	mV
V _{OH}	High-level output voltage	I _O = -2 mA, See Figure 6	4	4.6		V
V _{OL}	Low-level output voltage	I _O = 2 mA, See Figure 6		0.2	0.4	V
I _{I(off)}	Power-off bus input current	CANH = CANL = 5 V, V _{CC} at 0 V, TXD at 0 V			3	μΑ
I _{O(off)}	Power-off RXD leakage current	V _{CC} at 0 V, RXD at 5 V			20	μA
C _I	Input capacitance to ground (CANH or CANL)	TXD at 3 V, V _I = 0.4 sin (4E6 π t) + 2.5 V		13		pF
C _{ID}	Differential input capacitance	TXD at 3 V, $V_1 = 0.4 \sin (4E6\pi t)$		6		pF
R _{ID}	Differential input resistance	TXD at 3 V, STB at 0 V	30		80	kΩ
R _{IN}	Input resistance (CANH or CANL)	TXD at 3 V, STB at 0 V	15	30	40	kΩ
R _{I(m)}	Input resistance matching [1 – (R _{IN (CANH)} / R _{IN (CANL)})] × 100%	$V_{(CANH)} = V_{(CANL)}$	-3	0	3	%

⁽¹⁾ All typical values are at 25°C with a 5-V supply.

⁽²⁾ The TXD dominant time out (t_(dom)) disables the driver of the transceiver once the TXD has been dominant longer than t_(dom), which releases the bus lines to recessive, preventing a local failure from locking the bus dominant. The driver may only transmit dominant again after TXD has been returned HIGH (recessive). While this protects the bus from local faults, locking the bus dominant, it limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the t_(dom) minimum, limits the minimum bit rate. The minimum bit rate may be calculated by:

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions, $T_A = -40^{\circ}$ C to 125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	STB at 0 V , See Figure 6	60	90	130	ns
t _{PHL}	Propagation delay time, high-to-low-level output	STB at 0 V , See Figure 6	45	70	130	ns
t _r	Output signal rise time	STB at 0 V , See Figure 6		8		ns
t _f	Output signal fall time	STB at 0 V , See Figure 6		8		ns
t _{BUS}	Dominant time required on bus for wake-up from standby	STB at V _{CC} , See Figure 12	1.5		5	μs

⁽¹⁾ All typical values are at 25°C with a 5-V supply.

STB PIN CHARACTERISTICS

over recommended operating conditions, $T_A = -40$ °C to 125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
I_{IH}	High-level input current	STB at V _{CC}	-10	0	μA
I _{IL}	Low-level input current	STB at 0 V	-10	0	μΑ

SPLIT PIN CHARACTERISTICS

over recommended operating conditions, T_A = -40°C to 125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
Vo	Output voltage	–500 μA < I _O < 500 μA	0.3 V _{CC}	0.5 V _{CC}	0.7 V _{CC}	V
I _{O(stb)}	Leakage current, standby mode	STB at 2 V, –12 V ≤ V _O ≤ 12 V	- 5		5	μΑ

⁽¹⁾ All typical values are at 25°C with a 5-V supply.

THERMAL CHARACTERISTICS

over recommended operating conditions, $T_A = -40$ °C to 125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
0	Junction-to-air thermal resistance (1)	Low-K thermal resistance ⁽²⁾		211		°C/M
θ_{JA}	Junction-to-air thermal resistance	High-K thermal resistance (2)		131		°C/W
θ_{JB}	Junction-to-board thermal resistance			53		°C/W
θ_{JC}	Junction-to-case thermal resistance			79		°C/W
D	Average power dissipation	V_{CC} = 5 V, T_J = 27°C, R_L = 60 Ω, STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, C_L at RXD = 15 pF	112		\0/	
P _D		V_{CC} = 5.5 V, T_J = 130°C, R_L = 45 Ω , STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, C_L at RXD = 15 pF			170	mW
	Thermal shutdown temperature			185		°C

The junction temperature (T_J) is calculated using the following $T_J = T_A + (P_D \times \theta_{JA})$. Tested in accordance with the Low-K (EIA/JESD51-3) or High-K (EIA/JESD51-7) thermal metric definitions for leaded surface-mount packages.

FUNCTION TABLES

Table 1. DRIVER⁽¹⁾

IN	PUTS	OUT	BUS STATE		
TXD	STB	CANH	CANL	BUS STATE	
L	L	Н	L	Dominant	
Н	L	Z	Z	Recessive	
Open	L	Z	Z	Recessive	
Х	H or Open	Υ	Υ	Recessive	

(1) H = high level, L = low level, X = irrelevant, ? = indeterminate, Z = high impendance, Y = weak pull down to GND

Table 2. RECEIVER⁽¹⁾

DIFFERENTIAL INPUTS V _{ID} = V(CANH) - V(CANL)	STB	OUTPUT RXD	BUS STATE
V _{ID} ≥ 0.9 V	L	L	Dominant
V _{ID} ≥ 1.15 V	H or Open	L	Dominant
0.5 V < V _{ID} < 0.9 V	X	?	?
V _{ID} ≤ 0.5 V	X	Н	Recessive
Open	X	Н	Recessive

(1) H = high level, L = low level, X = irrelevant, ? = indeterminate, Z = high impendance

PARAMETER MEASUREMENT INFORMATION

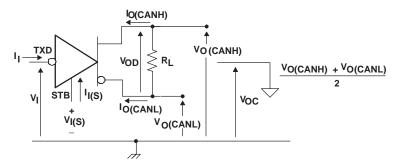


Figure 1. Driver Voltage, Current, and Test Definition

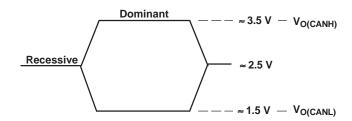


Figure 2. Bus Logic-State Voltage Definitions

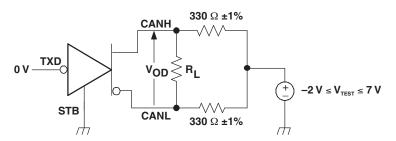


Figure 3. Driver V_{OD} Test Circuit

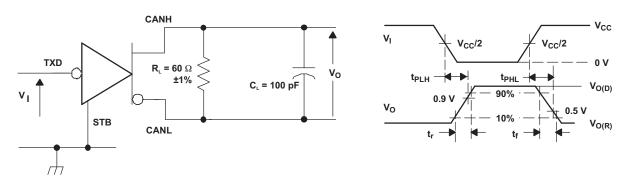


Figure 4. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

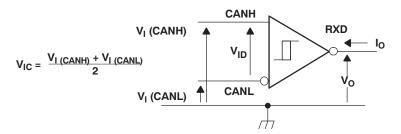
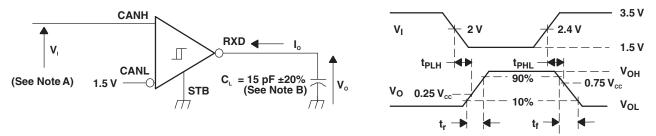



Figure 5. Receiver Voltage and Current Definitions

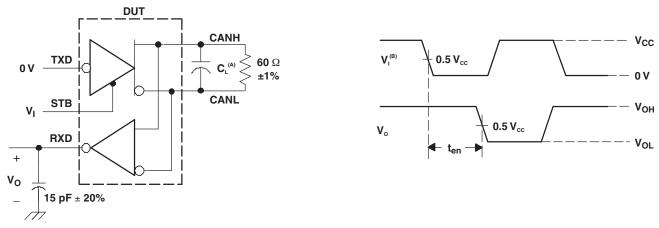
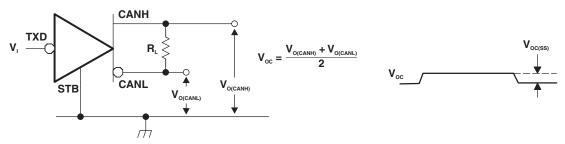

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125 kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O =$ 50 Ω .
- B. C_L includes instrumentation and fixture capacitance within ±20%.

Figure 6. Receiver Test Circuit and Voltage Waveforms

Table 3. Differential Input Voltage Threshold Test


	INPUT	OUT	PUT	
V _{CANH}	V _{CANL}	V _{ID}	F	र
–11.1 V	–12 V	900 mV	L	
12 V	11.1 V	900 mV	L	V
-6 V	–12 V	6 V	L	V _{OL}
12 V	6 V	6 V	L	
–11.5 V	–12 V	500 mV	Н	
12 V	11.5 V	500 mV	Н	
–12 V	-6 V	6 V	Н	V _{OH}
6 V	12 V	6 V	Н	
Open	Open	X	Н	

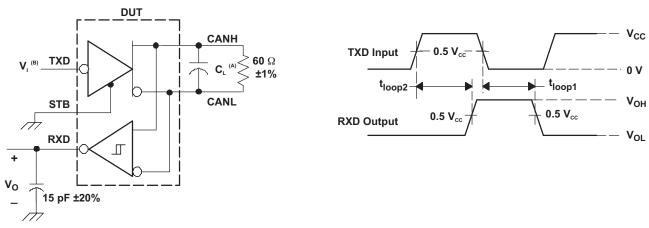
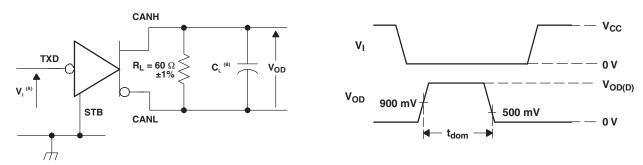

- A. $C_L = 100 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.
- B. All V_1 input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

Figure 7. ten Test Circuit and Waveforms

NOTE: All V_I input pulses are from 0 V to V_{CC} and supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

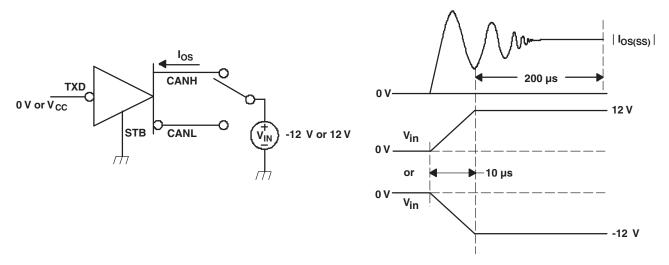
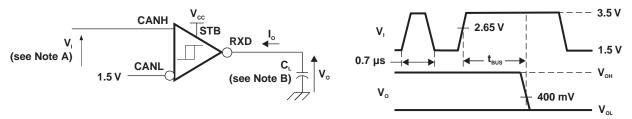

Figure 8. Common-Mode Output Voltage Test and Waveforms

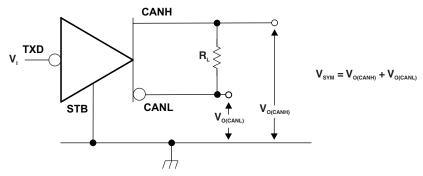
- A. $C_L = 100 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.
- B. All V₁ input pulses are from 0 V to V_{CC} and supplied by a generator having the following characteristics: t₁ or t₁ ≤ 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

Figure 9. t_(LOOP) Test Circuit and Waveforms

- A. All V_1 input pulses are from 0 V to V_{CC} and supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 500 Hz, 50% duty cycle.
- B. $C_1 = 100 \text{ pF}$ includes instrumentation and fixture capacitance within $\pm 20\%$.

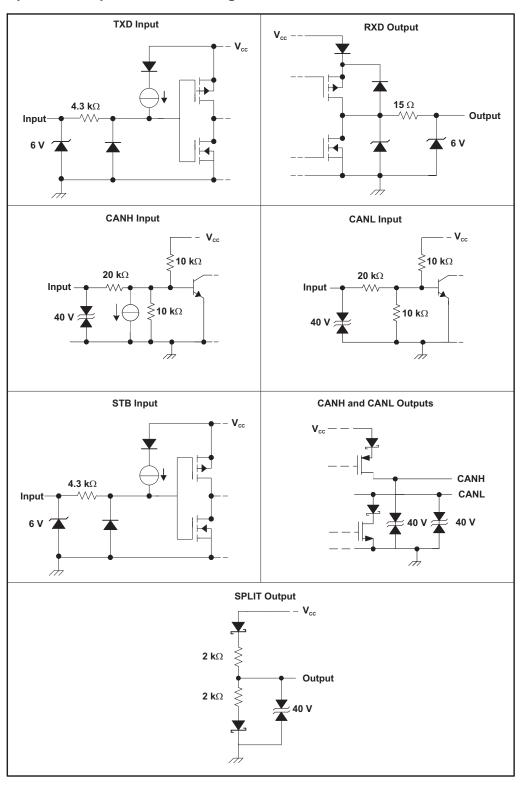
Figure 10. Dominant Time-Out Test Circuit and Waveforms


Figure 11. Driver Short-Circuit Current Test and Waveforms

- A. For V_1 bit width ≤ 0.7 µs, $V_0 = V_{OH}$. For V_1 bit width ≥ 5 µs, $V_0 = V_{OL}$. V_1 input pulses are supplied from a generator with the following characteristics: $t_t/t_f < 6$ ns.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 12. t_{BUS} Test Circuit and Waveforms



A. All V_I input pulses are from 0 V to V_{CC} and supplied by a generator having the following characteristics: $t_r/t_f \le 6$ ns, pulse repetition rate (PRR) = 250 kHz, 50% duty cycle.

Figure 13. Driver Output Symmetry Test Circuit

Equivalent Input and Output Schematic Diagrams

APPLICATION INFORMATION

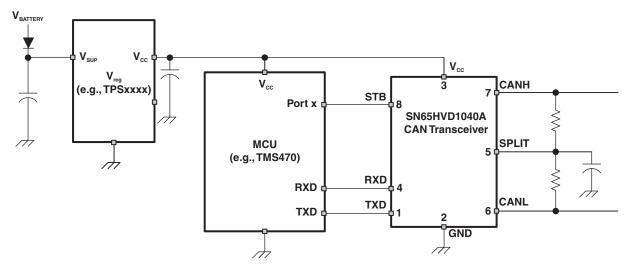


Figure 14. Typical Application Using Split Termination for Stabilization

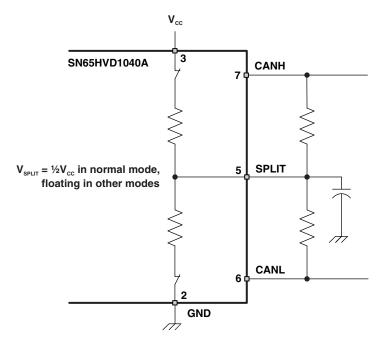


Figure 15. Split Pin Stabilization Circuitry and Application

REVISION HISTORY

Changes from Original (June 2008) to Revision A	Page
Changed V _{CC} Supply voltage range From: –0.3 V to 7 V To: –0.3 V to 6 V	3
 Changed V_I Voltage input range (TXD, STB) From: -0.5 V to 6 V To: -0.3 V to 6 V 	3
Changes from Revision A (January 2011) to Revision B	Page
Changed the Driver Function Table foot note to include: Y = weak pull down to GND	7
Changed the Split Output diagram	13

PACKAGE OPTION ADDENDUM

11-May-2011

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN65HVD1040AQDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

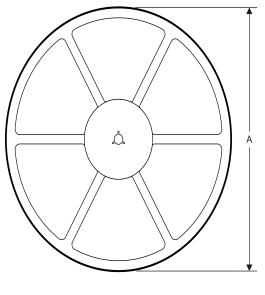
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

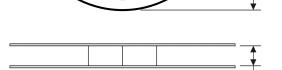
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

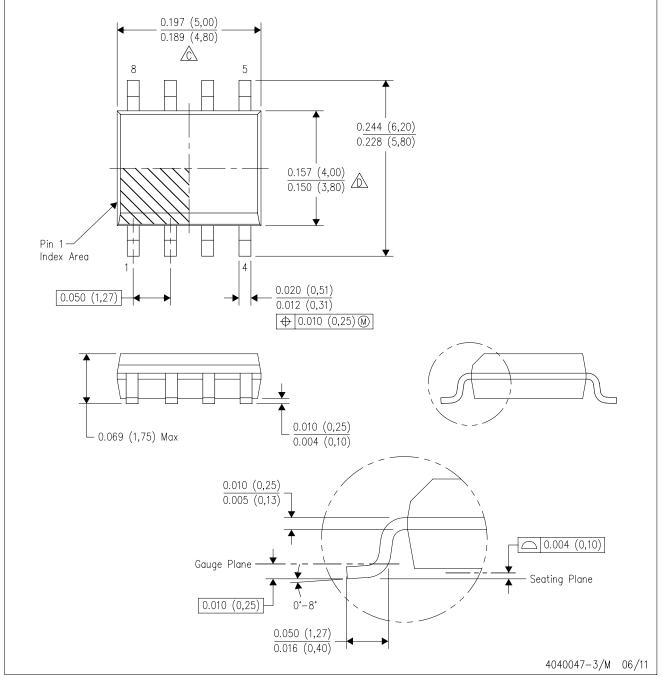
TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65HVD1040AQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

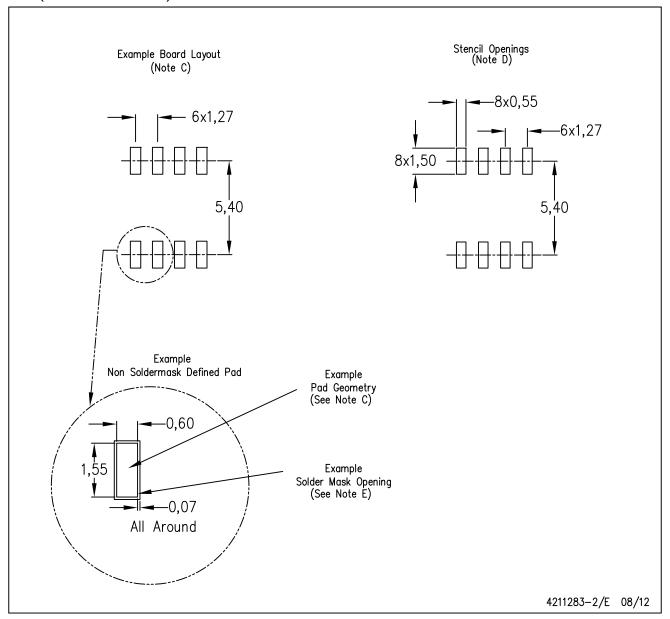


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN65HVD1040AQDRQ1	SOIC	D	8	2500	367.0	367.0	35.0	

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps

DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface Medical www.ti.com/medical interface.ti.com Logic logic.ti.com Security www.ti.com/security

Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>