Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family

- Advanced BiCMOS Technology
- Free-Running CLKA and CLKB Can Be Asynchronous or Coincident
- Read and Write Operations Synchronized to Independent System Clocks
- Two Separate 512×18 Clocked FIFOs Buffering Data in Opposite Directions
- IRA and ORA Synchronized to CLKA
- IRB and ORB Synchronized to CLKB
- Microprocessor Interface Control Logic
- Programmable Almost-Full/Almost-Empty Flag
- Fast Access Times of 9 ns With a $50-\mathrm{pF}$ Load and Simultaneous-Switching Data Outputs
- Released as DSCC SMD (Standard Microcircuit Drawing) 5962-9470401QXA and 5962-9470401QYA
- Package Options Include 84-Pin Ceramic Pin Grid Array (GB) and 84-Pin Ceramic Quad Flat (HT) Package

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

Terminal Assignments

TERMINAL	NAME	TERMINAL	NAME	TERMINAL	NAME	TERMINAL	NAME
A1	$\overline{\text { PENA }}$	B11	IRB	F9	NC	K2	A11
A2	$\overline{\text { CSA }}$	C1	GND	F10	B6	K3	GND
A3	W/RA	C2	HFA	F11	GND	K4	V_{CC}
A4	WENA	C5	CLKA	G1	A5	K5	GND
A5	ORA	C6	NC	G2	GND	K6	A17
A6	V_{CC}	C7	V_{CC}	G3	A4	K7	GND
A7	ORB	C10	HFB	G9	B4	K8	V_{CC}
A8	WENB	C11	GND	G10	GND	K9	GND
A9	W/RB	D1	A1	G11	B5	K10	B10
A10	$\overline{\mathrm{CSB}}$	D2	A0	H1	A7	K11	B9
A11	AF/AEB	D10	B0	H2	GND	L1	A10
B1	IRA	D11	B1	H10	GND	L2	A12
B2	AF/AEA	E1	A3	H11	B7	L3	A13
B3	$\overline{\text { RSTA }}$	E2	A2	J1	A8	L4	A14
B4	GND	E3	V_{CC}	J2	V_{CC}	L5	A16
B5	RENA	E9	V_{CC}	J5	A15	L6	B15
B6	CLKB	E10	B2	J6	NC	L7	B16
B7	RENB	E11	B3	J7	B17	L8	B14
B8	GND	F1	A6	J10	V_{CC}	L9	B13
B9	$\overline{\text { RSTB }}$	F2	GND	J11	B8	L10	B12
B10	$\overline{\text { PENB }}$	F3	NC	K1	A9	L11	B11

description

A FIFO memory is a storage device that allows data to be read from its array in the same order it is written. The SN54ABT7819 is a high-speed, low-power BiCMOS bidirectional clocked FIFO memory. Two independent 512×18 dual-port SRAM FIFOs on the chip buffer data in opposite directions. Each FIFO has flags to indicate empty and full conditions, a half-full flag, and a programmable almost-full/almost-empty flag.
The SN54ABT7819 is a clocked FIFO, which means each port employs a synchronous interface. All data transfers through a port are gated to the low-to-high transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple bidirectional interface between microprocessors and/or buses with synchronous control.
The state of the A0-A17 outputs is controlled by $\overline{\text { CSA }}$ and $W / \bar{R} A$. When both $\overline{\text { CSA }}$ and $W / \bar{R} A$ are low, the outputs are active. The A0-A17 outputs are in the high-impedance state when either $\overline{C S A}$ or $W / \bar{R} A$ is high. Data is written to FIFOA-B from port A on the low-to-high transition of CLKA when CSA is low, W/ $\bar{R} A$ is high, WENA is high, and the IRA flag is high. Data is read from FIFOB-A to the A0-A17 outputs on the low-to-high transition of CLKA when $\overline{C S A}$ is low, W/RA is low, RENA is high, and the ORA flag is high.
The state of the $B 0-B 17$ outputs is controlled by $\overline{C S B}$ and $W / \bar{R} B$. When both $\overline{C S B}$ and $W / \bar{R} B$ are low, the outputs are active. The B0-B17 outputs are in the high-impedance state when either $\overline{C S B}$ or $W / \bar{R} B$ is high. Data is written to FIFOB-A from port B on the low-to-high transition of CLKB when $\overline{C S B}$ is low, $W / \bar{R} B$ is high, WENB is high, and the IRB flag is high. Data is read from FIFOA-B to the B0-B17 outputs on the low-to-high transition of CLKB when $\overline{C S B}$ is low, $W / \bar{R} B$ is low, RENB is high, and the ORB flag is high.
The setup- and hold-time constraints for the chip selects ($\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}}$) and write/read selects ($\mathrm{W} / \overline{\mathrm{R}} \mathrm{A}, \mathrm{W} / \overline{\mathrm{R} B}$) enable and read operations on memory and are not related to the high-impedance control of the data outputs. If a port read enable (RENA or RENB) and write enable (WENA or WENB) are set low during a clock cycle, the chip select and write/read select can switch at any time during the cycle to change the state of the data outputs.
The input-ready and output-ready flags of a FIFO are two-stage synchronized to the port clocks for use as reliable control signals. CLKA synchronizes the status of the input-ready flag of FIFOA-B (IRA) and the output-ready flag of FIFOB-A (ORA). CLKB synchronizes the status of the input-ready flag of FIFOB-A (IRB) and the output-ready flag of FIFOA-B (ORB). When the input-ready flag of a port is low, the FIFO receiving input from the port is full and writes are disabled to its array. When the output-ready flag of a port is low, the FIFO that outputs data to the port is empty and reads from its memory are disabled. The first word loaded to an empty memory is sent to the FIFO output register at the same time its output-ready flag is asserted (high). When the memory is read empty and the output-ready flag is forced low, the last valid data remains on the FIFO outputs until the output-ready flag is asserted (high) again. In this way, a high on the output-ready flag indicates new data is present on the FIFO outputs.
The SN54ABT7819 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

CLOCKED BIDIRECTIONAL FIRST-IN, FIRST-OUT MEMORY
 SGBS305D - AUGUST 1994 - REVISED APRIL 1998

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the GB package.
functional block diagram

enable logic diagram (positive logic)

Function Tables

A PORT						
SELECT INPUTS					A0-A17	OPERATION
CLKA	$\overline{\text { CSA }}$	W/ERA	WENA	RENA		
X	H	X	X	X	High Z	None
\uparrow	L	H	H	X	High Z	Write A0-A17 to FIFOA-B
\uparrow	L	L	X	H	Active	Read FIFOB-A to A0-A17

B PORT

SELECT INPUTS					B0-B17	OPERATION
CLKB	$\overline{\text { CSBB }}$	W/原B	WENB	RENB		
X	H	X	X	X	High Z	N
\uparrow	L	H	H	X	High Z	Write B0-B17 to FIFOB-A
\uparrow	L	L	X	H	Active	Read FIFOA-B to B0-B17

Terminal Functions

TERMINAL NAME	1/0	DESCRIPTION
A0-A17	I/O	Port-A data. The 18-bit bidirectional data port for side A.
AF/AEA	O	FIFOA-B almost-full/almost-empty flag. Depth offsets can be programmed for AF/AEA, or the default value of 128 can be used for both the almost-empty offset (X) and the almost-full offset (Y). AF/AEA is high when X or fewer words or $(512-Y)$ or more words are stored in FIFOA-B. AF/AEA is forced high when FIFOA-B is reset.
AF/AEB	O	FIFOB-A almost-full/almost-empty flag. Depth offsets can be programmed for AF/AEB, or the default value of 128 can be used for both the almost-empty offset (X) and the almost-full offset (Y). AF/AEB is high when X or fewer words or (512 - Y) or more words are stored in FIFOB-A. AF/AEB is forced high when FIFOB-A is reset.
B0-B17	I/O	Port-B data. The 18-bit bidirectional data port for side B.
CLKA	I	Port-A clock. CLKA is a continuous clock that synchronizes all data transfers through port A to its low-to-high transition and can be asynchronous or coincident to CLKB.
CLKB	I	Port-B clock. CLKB is a continuous clock that synchronizes all data transfers through port B to its low-to-high transition and can be asynchronous or coincident to CLKA.
$\overline{\mathrm{CSA}}$	I	Port-A chip select. $\overline{\mathrm{CSA}}$ must be low to enable a low-to-high transition of CLKA to either write data from A0-A17 to FIFOA-B or read data from FIFOB-A to A0-A17. The A0-A17 outputs are in the high-impedance state when CSA is high.
$\overline{\mathrm{CSB}}$	I	Port-B chip select. $\overline{\mathrm{CSB}}$ must be low to enable a low-to-high transition of CLKB to either write data from B0-B17 to FIFOB-A or read data from FIFOA-B to B0-B17. The B0-B17 outputs are in the high-impedance state when CSB is high.
HFA	O	FIFOA-B half-full flag. HFA is high when FIFOA-B contains 256 or more words and is low when FIFOA-B contains 255 or fewer words. HFA is set low after FIFOA-B is reset.
HFB	O	FIFOB-A half-full flag. HFB is high when FIFOB-A contains 256 or more words and is low when FIFOB-A contains 255 or fewer words. HFB is set low after FIFOB-A is reset.
IRA	O	Port-A input-ready flag. IRA is synchronized to the low-to-high transition of CLKA. When IRA is low, FIFOA-B is full and writes to its array are disabled. IRA is set low during a FIFOA-B reset and is set high on the second low-to-high transition of CLKA after reset.
IRB	O	Port-B input-ready flag. IRB is synchronized to the low-to-high transition of CLKB. When IRB is low, FIFOB-A is full and writes to its array are disabled. IRB is set low during a FIFOB-A reset and is set high on the second low-to-high transition of CLKB after reset.
ORA	O	Port-A output-ready flag. ORA is synchronized to the low-to-high transition of CLKA. When ORA is low, FIFOB-A is empty and reads from its array are disabled. The last valid word remains on the FIFOB-A outputs when ORA is low. Ready data is present for the A0-A17 outputs when ORA is high. ORA is set low during a FIFOB-A reset and goes high on the third low-to-high transition of CLKA after the first word is loaded to an empty FIFOB-A.
ORB	O	Port-B output-ready flag. ORB is synchronized to the low-to-high transition of CLKB. When ORB is low, FIFOA-B is empty and reads from its array are disabled. The last valid word remains on the FIFOA-B outputs when ORB is low. Ready data is present for the B0-B17 outputs when ORB is high. ORB is set low during a FIFOA-B reset and goes high on the third low-to-high transition of CLKB after the first word is loaded to an empty FIFOA-B.
$\overline{\text { PENA }}$	1	AF/AEA program enable. After FIFOA-B is reset and before a word is written to its array, the binary value on A0-A7 is latched as an AF/AEA offset when $\overline{\text { PENA }}$ is low and CLKA is high.
$\overline{\text { PENB }}$	1	AF/AEB program enable. After FIFOB-A is reset and before a word is written to its array, the binary value on B0-B7 is latched as an AF/AEB offset when $\overline{\text { PENB }}$ is low and CLKB is high.
RENA	I	Port-A read enable. A high level on RENA enables data to be read from FIFOB-A on the low-to-high transition of CLKA when $\overline{C S A}$ is low, $W / \bar{R} A$ is low, and ORA is high.
RENB	I	Port-B read enable. A high level on RENB enables data to be read from FIFOA-B on the low-to-high transition of CLKB when $\overline{\mathrm{CSB}}$ is low, $W / \overline{\mathrm{R}} \mathrm{B}$ is low, and ORB is high.
$\overline{\text { RSTA }}$	I	FIFOA-B reset. To reset FIFOA-B, four low-to-high transitions of CLKA and four low-to-high transitions of CLKB must occur while RSTA is low. This sets HFA low, IRA low, ORB low, and AF/AEA high.
$\overline{\text { RSTB }}$	I	FIFOB-A reset. To reset FIFOB-A, four low-to-high transitions of CLKA and four low-to-high transitions of CLKB must occur while RSTB is low. This sets HFB low, IRB low, ORA low, and AF/AEB high.

Terminal Functions (Continued)

TERMINAL NAME	I/O	DESCRIPTION
WENA	1	Port-A write enable. A high level on WENA enables data on A0-A17 to be written into FIFOA-B on the low-to-high transition of CLKA when W/ $\bar{R} A$ is high, $\overline{C S A}$ is low, and IRA is high.
WENB	1	Port-B write enable. A high level on WENB enables data on B0-B17 to be written into FIFOB-A on the low-to-high transition of CLKB when W/ $\bar{R} B$ is high, $\overline{C S B}$ is low, and IRB is high.
W/RA	1	Port-A write/read select. A high on W/ $\bar{R} A$ enables A0-A17 data to be written to FIFOA-B on a low-to-high transition of CLKA when WENA is high, $\overline{C S A}$ is low, and IRA is high. A low on W/ $\bar{R} A$ enables data to be read from FIFOB-A on a low-to-high transition of CLKA when RENA is high, CSA is low, and ORA is high. The A0-A17 outputs are in the high-impedance state when $W / \bar{R} A$ is high.
W/ $\overline{\mathrm{R}} \mathrm{B}$	1	Port-B write/read select. A high on W/ $\overline{\mathrm{R}}$ B enables $\mathrm{B} 0-\mathrm{B} 17$ data to be written to FIFOB-A on a low-to-high transition of CLKB when WENB is high, $\overline{C S B}$ is low, and IRB is high. A low on W/ $\bar{R} B$ enables data to be read from FIFOA-B on a low-to-high transition of CLKB when RENB is high, $\overline{C S B}$ is low, and ORB is high. The B0-B17 outputs are in the high-impedance state when $W / \bar{R} B$ is high.

AF/AEA

Figure 1. Reset Cycle for FIFOA-B ${ }^{\dagger}$
\dagger FIFOB-A is reset in the same manner.

\dagger Written to FIFOA-B
Figure 2. Write Timing - Port A

\ddagger Written to FIFOB-A
Figure 3. Write Timing - Port B

CLOCKED BIDIRECTIONAL FIRST-IN, FIRST-OUT MEMORY
 SGBS305D - AUGUST 1994-REVISED APRIL 1998

Figure 4. ORB-Flag Timing and First Data-Word Fall-Through When FIFOA-B Is Empty \dagger
\dagger Operation of FIFOB-A is identical to that of FIFOA-B.

Figure 5. Write-Cycle and IRA-Flag Timing When FIFOA-B Is Full \dagger
\dagger Operation of FIFOB-A is identical to that of FIFOA-B.

CLOCKED BIDIRECTIONAL FIRST-IN, FIRST-OUT MEMORY
 SGBS305D - AUGUST 1994-REVISED APRIL 1998

\dagger Read from FIFOB-A
Figure 6. Read Timing - Port A

\ddagger Read from FIFOA-B
Figure 7. Read Timing - Port B

offset values for AF/AE

The AF/AE flag of each FIFO has two programmable limits: the almost-empty offset value (X) and the almost-full offset value (Y). They can be programmed from the input of the FIFO after it is reset and before a word is written to its memory. An AF/AE flag is high when its FIFO contains X or fewer words or $(512-Y)$ or more words.

To program the offset values for AF/AEA, $\overline{\text { PENA }}$ can be brought low after FIFOA-B is reset and only when CLKA is low. On the following low-to-high transition of CLKA, the binary value on A0-A7 is stored as the almost-empty offset value (X) and the almost-full offset value (Y). Holding $\overline{P E N A}$ low for another low-to-high transition of CLKA reprograms Y to the binary value on $\mathrm{A} 0-\mathrm{A} 7$ at the time of the second CLKA low-to-high transition.

During the first two CLKA cycles used for offset programming, $\overline{\text { PENA }}$ can be brought high only when CLKA is low. $\overline{\text { PENA }}$ can be brought high at any time after the second CLKA pulse used for offset programming returns low. A maximum value of 255 can be programmed for either X or Y (see Figure 9). To use the default values of $X=Y=128$, $\overline{P E N A}$ must be tied high. No data is stored in FIFOA-B while the AF/AEA offsets are programmed. The AF/AEB flag is programmed in the same manner, with $\overline{\text { PENB }}$ enabling CLKB to program the offset values taken from B0-B7.

Figure 9. Programming X and Y Separately for AF/AEA

SN54ABT7819

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, $\mathrm{V}_{\text {CC }}$	-0.5 V to 7 V
Input voltage range, V_{1} (see Note 1)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Voltage range applied to any output in the	-0.5 V to 5.5 V
Current into any output in the low state, Io	48 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions

		MIN	NOM
V_{CC}	Supply voltage	MAX	UNIT
V_{IH}	High-level input voltage	4.5	5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage		
I_{OH}	High-level output current	0	0.8
I OL	Low-level output current	V	
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input transition rise or fall rate	V_{CC}	V
T_{A}	Operating free-air temperature	-12	mA

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)| PARAMETER | | TEST CONDITIONS | | | | MIN | TYP\# | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIK | | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\boldsymbol{I}=-18 \mathrm{~mA}$ | | | | | -1.2 | V |
| V_{OH} | | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOH}=-3 \mathrm{~mA}$ | | | 2.5 | | | V |
| | | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, | $\mathrm{IOH}=-3 \mathrm{~mA}$ | | | 3 | | | |
| | | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOH}=-12 \mathrm{~mA}$ | | | 2 | | | |
| V ${ }_{\text {OL }}$ | | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOL}=24 \mathrm{~mA}$ | | | | 0.5 | 0.55 | V |
| I | | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND | | | | | ± 1 | $\mu \mathrm{A}$ |
| IOZH^{\S} | | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ | | | | | 50 | $\mu \mathrm{A}$ |
| IOZL§ | | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ | | | | | -50 | $\mu \mathrm{A}$ |
| $10 \\|$ | | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ | | | -40 | -100 | -180 | mA |
| ICC | | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{I}=0$, | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND | Outputs high | | | 15 | mA |
| | | Outputs low | | | | | 95 | |
| | | Outputs disabled | | | | | 15 | |
| C_{i} | Control inputs | | $\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V | | | | | 6 | | pF |
| C_{0} | Flags | | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V | | | | | 4 | | pF |
| C_{io} | A or B ports | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V | | | | | 8 | | pF |

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ The parameters IOZH and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 10)

		MIN MAX	UNIT
Clock frequency		50	MHz
$\mathrm{t}_{\mathrm{w}} \quad$ Pulse duration	CLKA, CLKB high or low	8	ns
$t_{\text {su }}$ Setup time	A0-A17 before CLKA \uparrow and B0-B17 before CLKB \uparrow	5	ns
	$\overline{\text { CSA }}$ before CLKA \uparrow and $\overline{\text { CSB }}$ before CLKB \uparrow	7.5	
	W/ $/ \overline{\mathrm{R}}$ a before CLKA \uparrow and $\mathrm{W} / \overline{\mathrm{R}} \mathrm{B}$ before CLKB \uparrow	7.5	
	WENA before CLKA \uparrow and WENB before CLKB \uparrow	5	
	RENA before CLKA \uparrow and RENB before CLKB \uparrow	5	
	$\overline{\text { PENA }}$ before CLKA \uparrow and $\overline{\text { PENB }}$ before CLKB \uparrow	5	
	$\overline{\text { RSTA }}$ or $\overline{\text { RSTB }}$ low before first CLKA \uparrow and CLKB $\uparrow \dagger$	5	
th Hold time	A0-A17 after CLKA \uparrow and B0-B17 after CLKB \uparrow	0	ns
	$\overline{\overline{C S A}}$ after CLKA \uparrow and $\overline{\mathrm{CSB}}$ after CLKB \uparrow	0	
	W/ $\overline{\mathrm{R}} \mathrm{A}$ after CLKA \uparrow and $\mathrm{W} / \overline{\mathrm{R}} \mathrm{B}$ after CLKB \uparrow	0	
	WENA after CLKA \uparrow and WENB after CLKB \uparrow	0	
	RENA after CLKA \uparrow and RENB after CLKB \uparrow	0	
		3	
	$\overline{\overline{R S T A}}$ or $\overline{\text { RSTB }}$ low after fourth CLKA \uparrow and CLKB $\uparrow \dagger$	4	

\dagger To permit the clock pulse to be utilized for reset purposes
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 10)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
$f_{\text {max }}$	CLKA or CLKB		50		MHz
$t_{\text {tpd }}$	CLKA \uparrow	A0-A17	3	12	ns
	CLKB \uparrow	B0-B17	3	12	
	CLKA \uparrow	IRA	3	12	
	CLKB \uparrow	IRB	3	12	
	CLKA \uparrow	ORA	2.5	12	
	CLKB \uparrow	ORB	2.5	12	
	CLKA \uparrow	AF/AEA	7	18	
	CLKB \uparrow		7	18	
tPLH	$\overline{\text { RSTA }}$	AF/AEA	3	15	ns
	CLKA \uparrow	AF/AEB	7	18	ns
$t_{\text {pd }}$	CLKB \uparrow		7	18	
tPLH	$\overline{\text { RSTB }}$	AF/AEB	3	15	ns
	CLKA \uparrow	HFA	7	18	
tPHL	CLKB \uparrow	HFA	7	18	ns
	$\overline{\text { RSTA }}$		3	15	
	CLKA \uparrow	HFB	7	18	
tPLH	CLKB \uparrow	HFB	7	18	ns
tPHL	$\overline{\text { RSTB }}$	HFB	3	15	ns
ten	$\overline{\text { CSA }}$	A0-A17	1.5	10	ns
	W/RA		1.5	10	
	$\overline{\mathrm{CSB}}$	B0-B17	1.5	10	
	W/RB		1.5	10	
${ }^{\text {d }}$ dis	$\overline{\text { CSA }}$	A0-A17	1.5	10	ns
	W/ $/ \overline{\mathrm{R}}$ A		1.5	10	
	$\overline{\text { CSB }}$	B0-B17	1.5	10	
	W/ $\overline{\mathrm{R}} \mathrm{B}$		1.5	10	

LOAD CIRCUIT

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

PARAMETER		S1
ten	tPZH	Open
	tPZL	Closed
${ }^{\text {d }}$ dis	tPHZ	Open
	tpLZ	Closed
${ }^{\text {tpd }}$	tPLH	Open
	tPHL	Open

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTE A: C_{L} includes probe and jig capacitance.
Figure 10. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 11

SUPPLY CURRENT
VS
CLOCK FREQUENCY

Figure 12

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package Type | Package
 Drawing | Pins | Package Qty | Eco Plan ${ }^{\text {(2) }}$ | Lead/
 Ball Finish | MSL Peak Temp ${ }^{(3)}$
 (Requires Login) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5962-9470401 Q X A$ | ACTIVE | CPGA | GB | 84 | 1 | TBD | Call TI | Call TI |
| SNJ54ABT7819GB | ACTIVE | CPGA | GB | 84 | 1 | TBD | POST-PLATE N $/ A$ for Pkg Type | |

${ }^{1)}$ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan-The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that ead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TIPb-Free products are suitable for use in specified lead-free processes
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ABT7819

- Catalog: SN74ABT7819

NOTE: Qualified Version Definitions

- Catalog - TI's standard catalog product

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI . Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connctivity	www.ti.com/wirelessconnectivity		
	TI E2E Comm	y Home Page	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

