

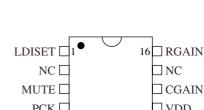
OVERVIEW

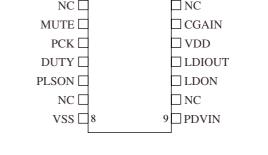
The SM8613AV is a portable CD player laser diode (LD) driver IC. Conventional portable CD players use a fixed-current LD drive method, but this increases the power dissipation and limits battery life. The SM8613AV employs an intermittent LD driver duty operation to reduce the laser power dissipation, which greatly reduces the current consumption when reading data and extends battery driver life.

FEATURES

PINOUT

(Top view)


- 2.3V low-voltage supply operation
- Intermittent-duty laser driver built-in (4-times speed read, 38MHz max. intermittent output)
- Laser switching frequency range: 8.6 to 38MHz
- Fixed-current drive/intermittent-duty drive switch function
- Intermittent current duty ratio adjust function
- Automatic power control (APC) function using luminosity-monitoring photodiode (PD)
- Low power dissipation
- Package: 16-pin VSOP (lead-free)


APPLICATIONS

Portable CD player

ORDERING INFORMATION

Device	Package		
SM8613AV	16-pin VSOP		



PACKAGE DIMENSIONS

(Unit: mm)

Weight: 0.07g

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	i/o		Description								
1	LDISET	0	LD	LD drive maximum current setting resistor connection								
2	NC	-	No	No connection (must be open)								
			Inte	ermittent-drive stop signal								
				MUTE	Laser drive state							
3	MUTE	ip		L	LD intermittent drive control (PLSON = H)							
				Н	LD constant-current drive							
4	PCK	i	Inte	ermittent contro	I reference pulse input							
5	DUTY	0	Inte	ermittent-duty r	atio adjust resistor connection							
			Inte	ermittent-drive	control signal							
	PLSON ip			PLSON	Laser drive state							
6		PLSON ip	B PLSON	PLSON	PLSON	PLSON ip	LSON ip	SON ip	SON ip		L	LD constant-current drive
				Н	LD intermittent drive control							
7	NC	-	No	lo connection (must be open)								
8	VSS	-	Gro	Ground (0V DC)								
9	PDVIN	i	Las	aser luminosity monitor voltage input								
10	NC	-	No	lo connection (must be open)								
			LD	drive current c	ontrol signal							
				LDON	Laser drive state							
11	LDON	ip		L	LD drive stop control (sleep mode)							
				Н	LD drive ON							
12	LDIOUT	0	LD	LD drive current output								
13	VDD	-	Sup	Supply voltage (2.5V DC)								
14	CGAIN	0	AP	APC frequency response control capacitor connection								
15	NC	-	No	No connection (must be open)								
16	RGAIN	0	AP	APC loop gain control resistor connection								

ip: Built-in pull-down resistor

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{DD}	- 0.5 to 7.0	V
Input voltage	V _{IN}	-0.5 to V _{DD} $+0.5$	V
Input current	I _{IN}	- 3.0 to + 3.0	mA
Operating temperature	T _{OPR}	- 20 to 70	°C
Storage temperature	T _{STG}	- 40 to 125	°C
Power dissipation	P _W	96	mW

DC Electrical Characteristics

 V_{DD} = 2.5V, Ta = + 25 °C unless otherwise noted

Parameter	Symbol	Condition		Rating	Unit	Test	
Farameter	Symbol		min	typ	max	onn	level
Guaranteed operating supply voltage	V _{DD}		2.3	2.5	3.3	V	I
Current consumption	I _{DD1}	$\begin{array}{l} \text{PDVIN-LDIOUT short,} \\ \text{R}_{\text{LDIOUT}} = 4\Omega, \text{ LDON} = \text{HIGH,} \\ \text{Excluding LDIOUT current} \end{array}$	1.0	1.7	2.3	mA	I
	I _{DD2}	LDON = LOW	-	-	30	μA	I

Input Specifications

Parameter	Symbol Condition	Condition	Rating				Test
		Condition	min	typ	max	Unit	level
PCK HIGH-level voltage	VIHPCK		$V_{DD} \times 0.7$	-	-	V	I
PCK LOW-level voltage	VILPCK		-	-	$V_{DD} \times 0.3$	V	I
PCK HIGH-level sink current	I _{HPCK}		-	-	20	μA	I
LDON HIGH-level voltage	V _{IHLDON}		$V_{DD} \times 0.7$	-	-	V	I
LDON LOW-level voltage	V _{ILLDON}		-	-	$V_{DD} \times 0.3$	V	I
LDON HIGH-level sink current	I _{HLDON}		-	-	20	μA	I
PLSON HIGH-level voltage	VIHPLSON		$V_{DD} \times 0.7$	-	-	V	I
PLSON LOW-level voltage	VILPLSON		-	-	$V_{DD} \times 0.3$	V	I
PLSON HIGH-level sink current	I _{HPLSON}		-	-	20	μA	I
MUTE HIGH-level voltage	VIHMUTE		$V_{DD} \times 0.7$	-	-	V	I
MUTE LOW-level voltage	VILMUTE		-	-	$V_{DD} \times 0.3$	V	I
MUTE HIGH-level sink current	I _{HMUTE}		-	-	20	μA	I

Electrical Characteristics

Parameter	Symbol	Condition		Rating		Unit	Test
Farameter			min	typ	max	Unit	level
PCK minimum input frequency	f _{PCKMIN}		-	-	4.3	MHz	I
PCK maximum input frequency	f _{PCKMAX}		19	-	-	MHz	I
Intermittent current output frequency range	f _{LD}		8.6	-	38	MHz	I
LDON response time	t _{LDON}	LDON = LOW to HIGH, I(LDIOUT) to 90%, $C_G = 6800 pF$	-	-	110	μs	II
PLSON, MUTE response time 1	t _{PLSON1}	PLSON = LOW to HIGH (MUTE: LOW), MUTE = HIGH to LOW (PLSON: HIGH), until the duty ratio stabilizes	-	-	20	μs	II
PLSON, MUTE response time 2	t _{PLSON2}	PLSON = HIGH to LOW (MUTE: LOW), MUTE = LOW to HIGH (PLSON: HIGH)	-	-	25	ns	II
LDIOUT maximum output current	I _{LDMAX}	PDVIN = 0V	40	-	-	mA	I
LDIOUT intermittent current rise time	t _{LDIR}		-	-	10	ns	П
LDIOUT intermittent current fall time	t _{LDIF}		-	-	10	ns	11
LDISET voltage	V _{LDISET}	1/3V _{DD}	0.75	0.83	0.92	V	I
PDVIN convergence voltage	V _{PDVIN}	$R_G = 33k\Omega$, $V_{DD} = 2.5V$, PDVIN-LDIOUT short, $R_{LDIOUT} = 20\Omega$	145	160	175	mV	I
PDVIN input impedance	Z _{PDVIN}		1	-	-	MΩ	П
APC loop cutoff frequency	f _{APC}	C _G = 6800pF	-	25	100	kHz	I
Minimum duty ratio	DR _{MIN}	$PCK = 4.3MHz, R_{DUTY} = 15k\Omega$	20	-	40	%	I
Maximum duty ratio	DR _{MAX}	$PCK = 4.3MHz, R_{DUTY} = 5k\Omega$	55	-	85	%	I
Minimum LD current ON time	t _{LDION}		-	14	-	ns	П

Note 1) LDON has internal pull-down resistor. Note 2) PLSON has internal pull-down resistor. Note 3) MUTE has internal pull-down resistor. Note 4) LDISET is in high-impedance state when LDON is HIGH. Note 5) DUTY is in high-impedance state when LDON is HIGH.

Test level description

Test level I	100% of devices tested at + 25°C
Test level II	Specifications guaranteed according to design and evaluation tests.

FUNCTIONAL DESCRIPTION

LD Driver Control

The LD is controlled by the 3 logic-level signals on LDON, PLSON, and MUTE. When LDON is HIGH, the LD is in drive mode and the drive current is output on LDIOUT. When LDON is LOW (sleep mode), the LD drive mode stops (LDIOUT output current = 0mA).

Also when LDON is HIGH, LD intermittent drive mode operation occurs when PLSON is HIGH and MUTE is LOW.

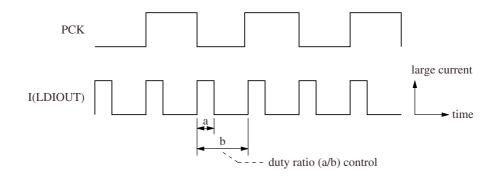

LDON	PLSON	MUTE	Laser drive state
Н	L	L	LDIOUT constant-current output
Н	L	Н	LDIOUT constant-current output
Н	Н	L	LDIOUT intermittent current output
Н	Н	Н	LDIOUT constant-current output
L	×	×	LDIOUT = 0mA (sleep mode)

Table 1.	Control	signals	and	laser	drive	states
Tuble 1.	001101	Signais	ana	laser	anvo	Sidico

Note) × : Don't care.

Frequency Multiplier Function and LD Drive Current Duty Ratio Setting

The SM8613AV multiplies the PCK input frequency by 2, which is then used as the intermittent-drive reference frequency. The intermittent drive LD current ON time is shown in the following figure.

The intermittent current output from LDIOUT is automatically adjusted as the frequency changes to maintain the duty ratio almost constant. The intermittent current duty ratio is set by resistor R_{DUTY} connected between DUTY and VSS pins, and is given by the following equation.

$$dutyratio = \left(1 - \frac{\frac{3}{2}V(DUTY)}{\frac{1}{2}VDD}\right) \times 100 = \frac{44[k\Omega] - 2 \times R_{DUTY}}{R_{DUTY} + 44[k\Omega]} \times 100 \ [\%]$$
$$V(DUTY) = \frac{R_{DUTY}}{R_{DUTY} + 44[k\Omega]} \times VDD \ [V]$$

 $\mathsf{R}_{\mathsf{DUTY}}$: resistor connected to DUTY pin [k Ω]

Laser Diode Drive Current Mid-value Set Function

The laser diode drive current mid-value can be adjusted by changing the resistance R_{LD} connected between the LDISET and VSS pins. The laser diode drive current mid-value reference value I_{LD0} , given by the following equation, is set to the LDIOUT output current when the PDVIN voltage is in balance state (147 to 193mV). Note that the actual LDIOUT current may change due to feedback gain, and laser diode/photo diode tolerance variations.

If R_G is not connected, the output current has no relationship to the reference current value, but is determined by the PDVIN convergence voltage.

$$ILD0 = ILDSET \times 120 = \frac{40VDD}{RLD}$$
 [A]

 R_{LD} : LDISET connected resistor [Ω]

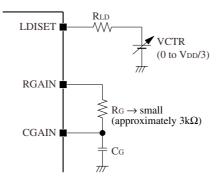
APC Loop Gain Setting

The APC loop gain can be adjusted using an external resistor R_G . The gain set resistor, R_G , is connected between RGAIN and CGAIN. The PDVIN voltage to laser drive current open-loop gain is given approximately by the following equation.

$$G_{MPDVIN} = 1.15 \times 10^{-4} R_G [S]$$

If the external resistor R_G is removed, the maximum gain Gm = 26 [S] is selected.

APC Loop Cutoff Frequency Setting


The APC loop cutoff frequency f_{APC} is determined by the capacitor C_G connected between CGAIN and VSS pins. The same result occurs if C_G is connected between RGAIN and CGAIN pins.

$$f_{APC} = \frac{1}{2\pi 950C_G} \quad [\text{Hz}]$$

Laser APC Convergence Current External Signal Adjustment

The LD convergence current is determined by the internal bias voltage. However, if the APC loop gain resistor R_G is small, the convergence current can be adjusted externally.

The convergence current is adjusted by the LDISET current, shown in the figure below. With VCTR in the range 0 to $1/3V_{DD}$, the LDISET current decreases with increasing VCTR, and the laser convergence current center point also decreases in response.

NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0112AE 2001.12