

SM74503 800mA Low-Dropout Linear Regulator

Check for Samples: SM74503

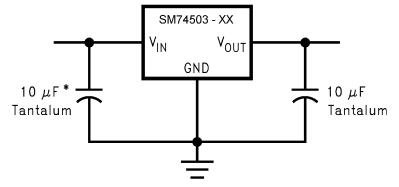
FEATURES

- Renewable Energy Grade
- Available in 3.3V and 5V Versions
- **Space Saving SOT-223 Package**
- **Current Limiting and Thermal Protection**
- **Output Current 800mA**
- Line Regulation 0.2% (Max)
- Load Regulation 0.4% (Max)
- Temperature Range -40°C to 125°C

APPLICATIONS

- **Photovoltaic Electronics**
- Post Regulator for Switching DC/DC Converter
- **High Efficiency Linear Regulators**
- **Battery Charger**
- **Battery Powered Instrumentation**

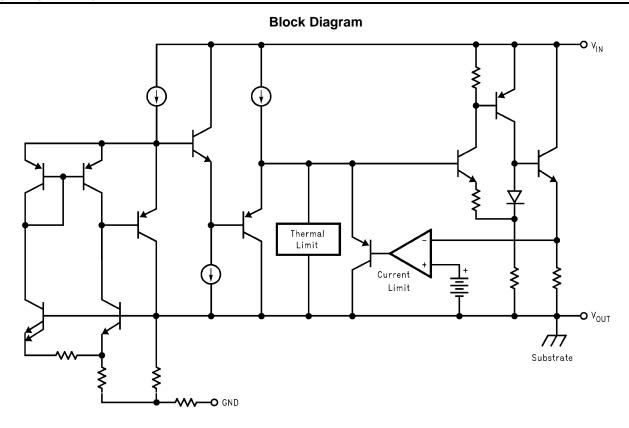
Typical Application

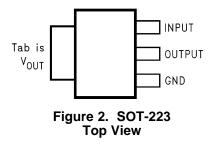

DESCRIPTION

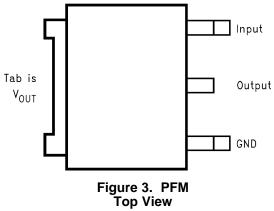
The SM74503 is a series of low dropout voltage regulators with a dropout of 1.2V at 800mA of load current. It has the same pin-out as TI's industry standard LM317.

The SM74503 is available in two fixed voltages, 3.3V and 5V.

The SM74503 offers current limiting and thermal shutdown. Its circuit includes a zener trimmed bandgap reference to assure output voltage accuracy to within ±1%.


The SM74503 series is available in SOT-223 and PFM packages. A minimum of 10µF tantalum capacitor is required at the output to improve the transient response and stability.


^{*}Required if the regulator is located far from the power supply filter.


Figure 1. Fixed Output Regulator

Connection Diagram

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Absolute Maximum Ratings (1)(2)

Maximum Input Voltage (V _{IN} to GND)	20V
Power Dissipation (3)	Internally Limited
Junction Temperature (T _J)	150°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature	
SOT-223 Package	260°C, 4 sec
ESD Tolerance ⁽⁴⁾	2000V

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance. For specifications and the test conditions, see the Electrical Characteristics.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board. For testing purposes, ESD was applied using human body model, 1.5k Ω in series with 100pF.

Operating Ratings⁽¹⁾

Input Voltage (V _{IN} to GND)	15V
Junction Temperature Range (T _J) ⁽²⁾	
SM74503	-40°C to 125°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance. For specifications and the test conditions, see the Electrical Characteristics.
- The maximum power dissipation is a function of T_{J(max)}, θ_{JA} , and T_A. The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

SM74503 Electrical Characteristics

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}$ C. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, -40°C to 125°C.

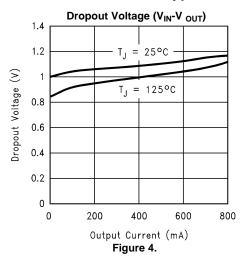
Symbol	Parameter	Conditions	Min (1)	Typ	Max (1)	Units
V _{OUT}	Output Voltage	SM74503-3.3 $I_{OUT} = 10mA$, $V_{IN} = 5V$, $T_{J} = 25$ °C $0 \le I_{OUT} \le 800mA$, $4.75V \le V_{IN} \le 10V$	3.267 3.168	3.300 3.300	3.333 3.432	V
		SM74503-5.0 $I_{OUT} = 10$ mA, $V_{IN} = 7$ V, $T_{J} = 25$ °C $0 \le I_{OUT} \le 800$ mA, 6.5 V $\le V_{IN} \le 12$ V	4.950 4.800	5.000 5.000	5.050 5.200	V
ΔV _{OUT}	Line Regulation (3)	SM74503-3.3 $I_{OUT} = 0$ mA, 4.75V $\leq V_{IN} \leq 1$ 5V		1	10	mV
		SM74503-5.0 $I_{OUT} = 0mA, 6.5V \le V_{IN} \le 15V$		1	15	mV
ΔV_{OUT}	Load Regulation (3)	SM74503-3.3 $V_{IN} = 4.75V, 0 \le I_{OUT} \le 800 \text{mA}$		1	15	mV
		SM74503-5.0 $V_{IN} = 6.5V, 0 \le I_{OUT} \le 800mA$		1	20	mV

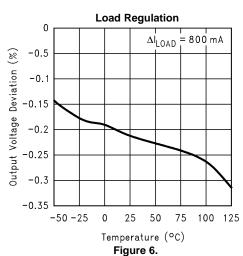
- All limits are guaranteed by testing or statistical analysis.
- Typical Values represent the most likely parametric norm.
- Load and line regulation are measured at constant junction room temperature.

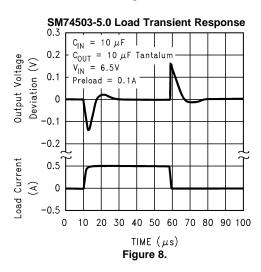
SM74503 Electrical Characteristics (continued)

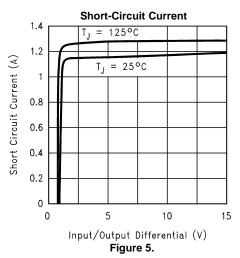
Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}\text{C}$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, -40°C to 125°C .

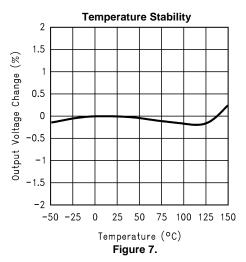
Symbol	Parameter	Conditions	Min (1)	Typ (2)	Max (1)	Units
V _{IN} -V _{OUT}	Dropout Voltage (4)	I _{OUT} = 100mA		1.10	1.30	V
		I _{OUT} = 500mA		1.15	1.35	V
		I _{OUT} = 800mA		1.20	1.40	V
I _{LIMIT}	Current Limit	V_{IN} - V_{OUT} = 5V, T_J = 25°C	800	1200	1500	mA
Quiesco	Quiescent Current	SM74503-3.3 V _{IN} ≤ 15V		5	15	mA
		SM74503-5.0 V _{IN} ≤ 15V		5	15	mA
	Thermal Regulation	T _A = 25°C, 30ms Pulse		0.01	0.1	%/W
	Ripple Regulation	f_{RIPPLE} =1 20Hz, V_{IN} - V_{OUT} = 3V V_{RIPPLE} = 1 V_{PP}	60	75		dB
	Temperature Stability			0.5		%
	Long Term Stability	T _A = 125°C, 1000Hrs		0.3		%
	RMS Output Noise	(% of V _{OUT}), 10Hz ≤ f ≤10kHz		0.003		%
Thermal Resistance Junction-to-Case		4-Lead SOT-223		15.0		°C/W
	Junction-to-Case	3-Lead PFM		10		°C/W
	Thermal Resistance	4-Lead SOT-223 (No heat sink)		136		°C/W
	Junction-to-Ambient No air flow)	3-Lead PFM (No heat sink) ⁽⁵⁾		92		°C/W

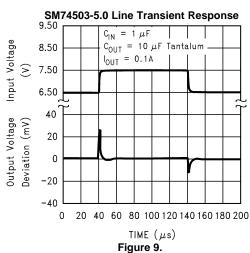

⁽⁴⁾ The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 100mV from the nominal value obtained at $V_{IN} = V_{OUT} + 1.5V$.


⁽⁵⁾ Minimum pad size of 0.038in²




www.ti.com SNVS722 - NOVEMBER 2011


Typical Performance Characteristics



APPLICATION NOTE

EXTERNAL CAPACITORS/STABILITY

Input Bypass Capacitor

An input capacitor is recommended. A $10\mu F$ tantalum on the input is a suitable input bypassing for almost all applications.

Output Capacitor

The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and ESR (Equivalent Series Resistance). The minimum output capacitance required by the SM74503 is $10\mu\text{F}$, if a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should range between 0.3Ω - 22Ω .

LOAD REGULATION

The SM74503 regulates the voltage that appears between its output and ground pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed.

Figure 10, shows a typical application using a fixed output regulator. The Rt1 and Rt2 are the line resistances. It is obvious that the V_{LOAD} is less than the V_{OUT} by the sum of the voltage drops along the line resistances. In this case, the load regulation seen at the R_{LOAD} would be degraded from the data sheet specification. To improve this, the load should be tied directly to the output terminal on the positive side and directly tied to the ground terminal on the negative side.

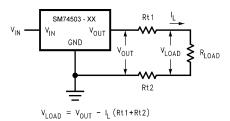


Figure 10. Typical Application using Fixed Output Regulator

PROTECTION DIODES

Under normal operation, the SM74503 regulators do not need any protection diode. When a output capacitor is connected to a regulator and the input is shorted to ground, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and rate of decrease of V_{IN} . In the SM74503 regulators, the internal diode between the output and input pins can withstand microsecond surge currents of 10A to 20A. With an extremely large output capacitor (\geq 1000 μ F), and with input instantaneously shorted to ground, the regulator could be damaged.

In this case, an external diode is recommended between the output and input pins to protect the regulator, as shown in Figure 11.

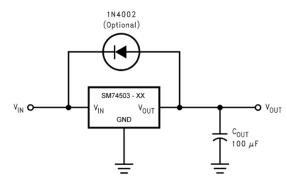
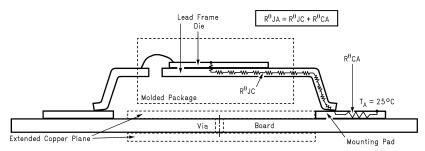



Figure 11. Regulator with Protection Diode

HEATSINK REQUIREMENTS

When an integrated circuit operates with an appreciable current, its junction temperature is elevated. It is important to quantify its thermal limits in order to achieve acceptable performance and reliability. This limit is determined by summing the individual parts consisting of a series of temperature rises from the semiconductor junction to the operating environment. A one-dimensional steady-state model of conduction heat transfer is demonstrated in Figure 12. The heat generated at the device junction flows through the die to the die attach pad, through the lead frame to the surrounding case material, to the printed circuit board, and eventually to the ambient environment. Below is a list of variables that may affect the thermal resistance and in turn the need for a heatsink.

R _{BJC} (Component Variables)	R _{8CA} (Application Variables)
Leadframe Size & Material	Mounting Pad Size, Material, & Location
No. of Conduction Pins	Placement of Mounting Pad
Die Size	PCB Size & Material
Die Attach Material	Traces Length & Width
Molding Compound Size and Material	Adjacent Heat Sources
	Volume of Air
	Ambient Temperatue
	Shape of Mounting Pad

Note that the case temperature is measured at the point where the leads contact with the mounting pad surface.

Figure 12. Cross-sectional view of Integrated Circuit Mounted on a printed circuit board

The SM74503 regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the SM74503 must be within the range of -40° C to 125°C. A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. To determine if a heatsink is needed, the power dissipated by the regulator, P_D , must be calculated:

$$I_{IN} = I_L + I_G$$

$$P_D = (V_{IN} - V_{OUT})I_L + V_{IN}I_G$$

Figure 13 shows the voltages and currents which are present in the circuit.

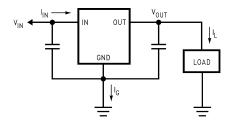


Figure 13. Power Dissipation Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, $T_R(max)$:

$$T_R(max) = T_J(max) - T_A(max)$$

where $T_J(max)$ is the maximum allowable junction temperature (125°C), and $T_A(max)$ is the maximum ambient temperature which will be encountered in the application.

Using the calculated values for $T_R(max)$ and P_D , the maximum allowable value for the junction-to-ambient thermal resistance (θ_{JA}) can be calculated:

$$\theta_{JA} = T_R(max)/P_D$$

If the maximum allowable value for θ_{JA} is found to be $\geq 136^{\circ}\text{C/W}$ for SOT-223 package or $\geq 92^{\circ}\text{C/W}$ for PFM package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θ_{JA} falls below these limits, a heatsink is required.

As a design aid, Table 1 shows the value of the θ_{JA} of SOT-223 and PFM for different heatsink area. The copper patterns that we used to measure these θ_{JA} s are shown at the end of the Application Notes Section. Figure 14 and Figure 15 reflects the same test results as what are in the Table 1

Figure 16 and Figure 17 shows the maximum allowable power dissipation vs. ambient temperature for the SOT-223 and PFM device. Figure 18 and Figure 19 shows the maximum allowable power dissipation vs. copper area (in²) for the SOT-223 and PFM devices. Please see AN1028 for power enhancement techniques to be used with SOT-223 and PFM packages.

Tubio II OJA Dilicioni Houtshin Alca						
Layout	Coppe	r Area	Thermal Resistance			
	Top Side (in ²) (1)	Bottom Side (in ²)	(θ _{JA} ,°C/W) SOT-223	(θ _{JA} ,°C/W) PFM		
1	0.0123	0	136	103		
2	0.066	0	123	87		
3	0.3	0	84	60		
4	0.53	0	75	54		
5	0.76	0	69	52		
6	1	0	66	47		
7	0	0.2	115	84		
8	0	0.4	98	70		
9	0	0.6	89	63		
10	0	0.8	82	57		
11	0	1	79	57		
12	0.066	0.066	125	89		
13	0.175	0.175	93	72		
14	0.284	0.284	83	61		
15	0.392	0.392	75	55		
16	0.5	0.5	70	53		

Table 1. θ_{JA} Different Heatsink Area

(1) Tab of device attached to topside copper

0

0

0.2

www.ti.com

Figure 14. θ_{JA} vs. 1oz Copper Area for SOT-223

0.4

0.6

 $loz Copper Area (in^2)$

0.8

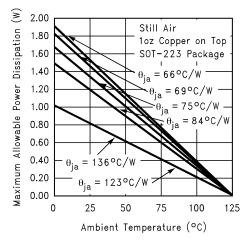


Figure 16. Maximum Allowable Power Dissipation vs. Ambient Temperature for SOT-223

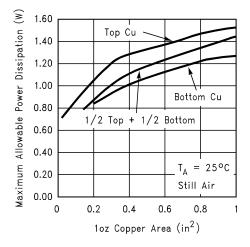


Figure 18. Maximum Allowable Power Dissipation vs. 1oz Copper Area for SOT-223

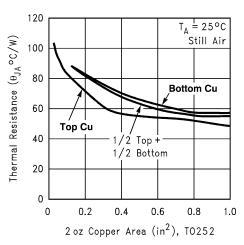


Figure 15. θ_{JA} vs. 2oz Copper Area for PFM

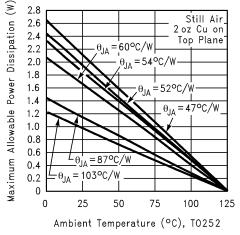


Figure 17. Maximum Allowable Power Dissipation vs. Ambient Temperature for PFM

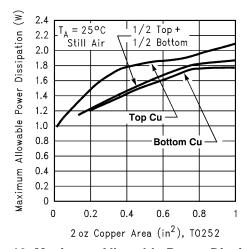


Figure 19. Maximum Allowable Power Dissipation vs. 2oz Copper Area for PFM

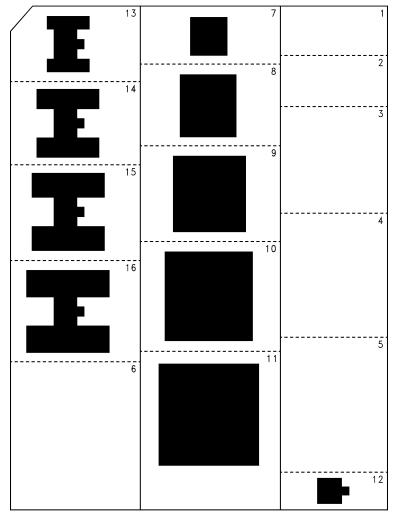


Figure 20. Top View of the Thermal Test Pattern in Actual Scale

Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

www.ti.com

Figure 21. Bottom View of the Thermal Test Pattern in Actual Scale

TEXAS INSTRUMENTS

Typical Application Circuits

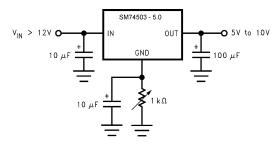


Figure 22. Adjusting Output of Fixed Regulators

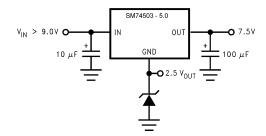


Figure 23. Regulator with Reference

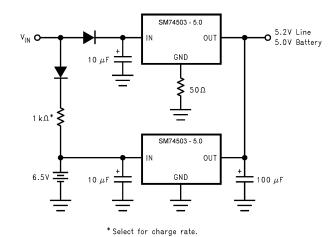


Figure 24. Battery Backed-Up Regulated Supply

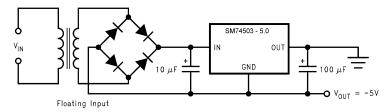


Figure 25. Low Dropout Negative Supply

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>