Signetics

NE/SA/SE558 **Quad Timer**

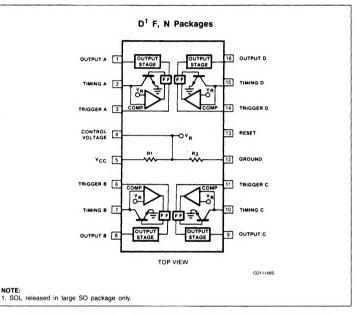
Product Specification

Linear Products

DESCRIPTION

The 558 Quad Timers are monolithic timing devices which can be used to produce four independent timing functions. The 558 output sinks current. These highly stable, general purpose controllers can be used in a monostable mode to produce accurate time delays: from microseconds to hours. In the time delay mode of operation, the time is precisely controlled by one external resistor and one capacitor. A stable operation can be achieved by using two of the four timer sections.

The four timer sections in the 558 are edge-triggered; therefore, when connected in tandem for sequential timing applications, no coupling capacitors are required. Output current capability of 100mA is provided in both devices.


FEATURES

- 100mA output current per section
- Edge-triggered (no coupling capacitor)
- Output independent of trigger conditions
- Wide supply voltage range 4.5V to 18V
- Timer intervals from microseconds to hours
- Time period equals RC
- Military gualifications pending

APPLICATIONS

- Sequential timing
- Time delay generation
- Precision timing
- Industrial controls
- Quad one-shot

PIN CONFIGURATION

ORDERING INFORMATION

NOTE:

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE		
16-Pin Plastic SOL	0 to + 70°C	NE558D		
16-Pin Cerdip	0 to + 70°C	NE558F		
16-Pin Plastic DIP	0 to +70°C	NE558N		
16-Pin Cerdip	-40°C to +85°C	SA558F		
16-Pin Plastic DIP	-40°C to +85°C	SA558N		
16-Pin Cerdip	-55°C to +125°C	SE558F		
16-Pin Plastic DIP	-55°C to + 125°C	SE558N		

NE/SA/SE558

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT	
V _{CC}	Supply voltage NE/SA558 SE558	+ 16 + 18	v v	
PD	Maximum power dissipation T _A = 25°C ambient (still-air) ¹ F package N package D package	1190 1450 1090	mW mW mW	
T _A	Operating ambient temperature range NE558 SA558 SE558	0 to +70 -40 to +85 -55 to +125	°C °C °C	
T _{STG}	Storage temperature range	-65 to +150	°C	
T _{SOLD}	Lead soldering temperature (10sec max)	+ 300	°C	

NOTE:

1. Derate above 25°C, at the following rates:

F package at 9.5mW/°C

N package at 11.6mW/°C

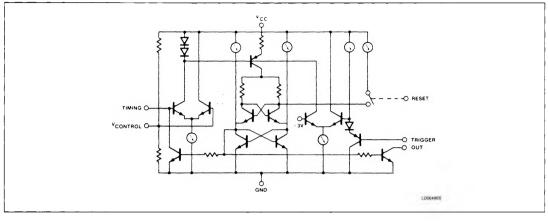
D package at 8.7mW/°C

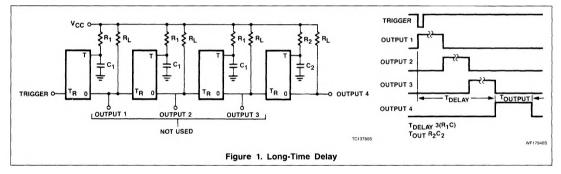
DC AND AC ELECTRICAL CHARACTERISTICS T_A = 25°C, V_{CC} = +5V to +15V, unless otherwise specified.

SYMBOL	PARAMETER		SE558			NE/SA558			
		TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
V _{CC}	Supply voltage		4.5		18	4.5		16	v
lcc	Supply current	V _{CC} = Reset = 15V		16	32		16	36	mA
	Timing accuracy (t = RC)	$R = 2k\Omega \text{ to } 100k\Omega,$ $C = 1\mu F$							
$t_A \Delta t_A / \Delta T \Delta t_A / \Delta V_S$	Initial accuracy Drift with temperature Drift with supply voltage			± 1.0 30 0.1	3 100 0.9		± 2 30 0.1	5 150 0.9	% ppm/°C %/V
VTRIG	Trigger voltage ¹	V _{CC} = 15V	0.8		2.4	0.8		2.4	v
TRIG	Trigger current	Trigger = 0V	1	5	30		5	100	μA
VRESET	Reset voltage ²		0.8		2.4	0.8		2.4	v
RESET	Reset current	Reset		50	300		50	500	μA
V _{TH}	Threshold voltage			0.63			0.63		$\times V_{CC}$
	Threshold leakage			15			15		nA
V _{OUT}	Output voltage ³	I _L = 10mA I _L = 100mA		0.1 0.7	0.2 1.5		0.1 1.0	0.4 2.0	v v
	Output leakage		1	10	500		10	500	nA
t _{PD}	Propagation delay			1.0			1.0	1	μs
t _R	Rise time of output	I _L = 100mA		100			100		ns
t _F	Fall time of output	1 _L = 100mA		100			100		ns

NOTES:

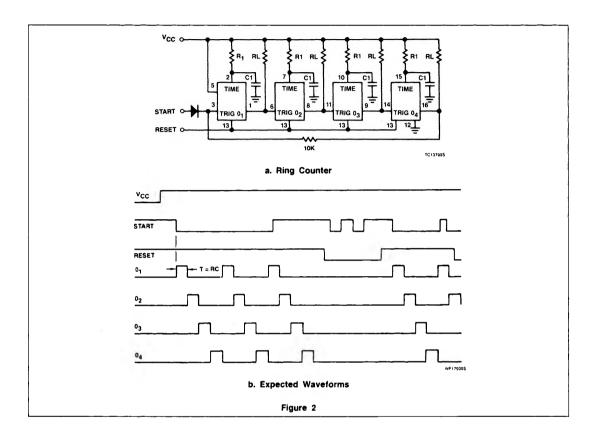
1. The trigger functions only on the falling edge of the trigger pulse only after previously being high. After reset, the trigger must be brought high and then low to implement triggering.


2. For reset below 0.8V, outputs set low and trigger inhibited. For reset above 2.4V, trigger enabled.


3. The 558 output structure is open-collector which requires a pull-up resistor to V_{CC} to sink current. The output is normally low sinking current.

Quad Timer

NE/SA/SE558


558 EQUIVALENT CIRCUIT

Quad Timer

NE/SA/SE558

