
INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC02 1996 Aug 13

FEATURES

• Twin PIP in interlaced mode at 8-bit resolution

- · Sub-title mode features built in
- Large display fine positioning area, both channels independent

Picture-In-Picture (PIP) controller

- Only 2 Mbit required as external VDRAM (2 × 1 Mbit or 1 × 2 Mbit)
- Four 8-bit Analogue Digital Converters (ADCs; > 7-bit performance) with clamp circuit
- Most PIP modes handle interlaced pictures without joint line error
- Two PLLs which generate the line-locked clocks for the acquisition channels
- Display PLL to generate line-locked clock for the display
- Three 8-bit Digital Analogue Converters (DACs)
- 4 : 1 : 1 data format
- Data reduction factors 1 to 1, 1 to 2, 1 to 3 and 1 to 4, horizontal and vertical independent.

I²C-bus programmable

- · Single and double PIP modes can be set
- Full field still mode available
- · Several aspect ratios can be handled
- · Reduction factors can be set freely
- Selection of vertical filtering type
- · Freeze of live pictures
- Fine tuned display position, H (8-bit), V (8-bit), both channels independent
- Fine tuned acquisition area, H (4-bit), V (8-bit), both channels independent
- Eight main borders, sub-borders and background colours selectable
- Border and background brightness adjustable, 30%, 50%, 70% and 100% IRE
- Several type of decoder input signals can be set.

GENERAL DESCRIPTION

The SAB9076H is a picture-in-picture controller for NTSC TV-sets. The circuit contains ADCs, reduction circuitry, memory control, display control and DACs.

The device inserts one or two live video signals with original or reduced sizes into a live video signal. All video signals are expected to be analog baseband signals. The conversion into the digital environment and back to the analog environment is carried out on chip. Internal clocks are generated by two acquisition PLLs and a display PLL.

Due to the two PIP channels and a large external memory a wide range of PIP modes are offered. The emphasis is put on single-PIP, double-PIP, split-screen mode and a many multi-PIP modes.

SAB9076H

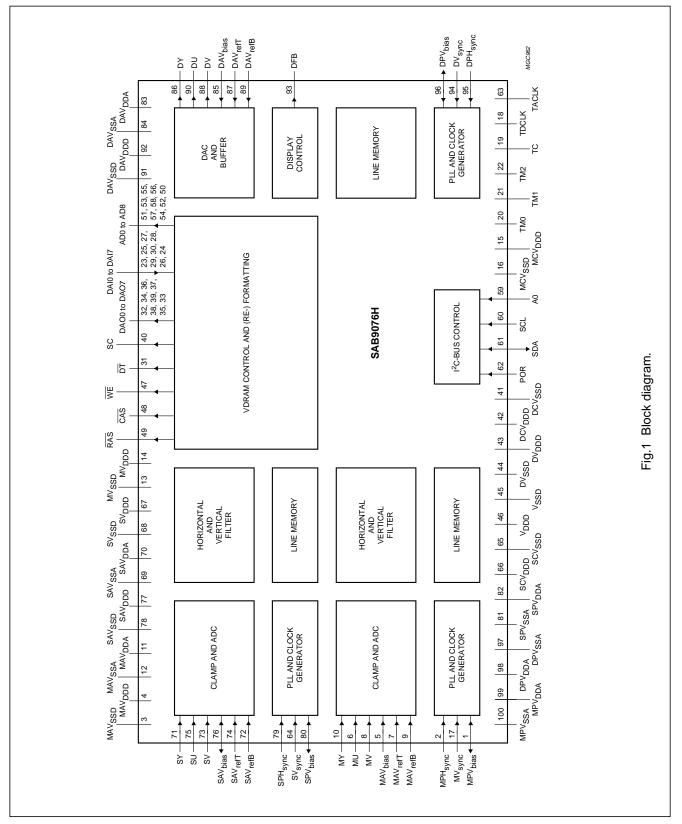
QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	supply voltage		4.5	5.0	5.5	V
I _{DD}	supply current		_	200	_	mA
f _{sys}	system frequency	note 1	-	27	-	MHz
f _{loop}	PLL loop bandwidth frequency		4	-	-	kHz
t _{jitter}	PLL short term stability time	jitter during 1 line (64 μ s)	_	_	4	ns
ς	PLL damping factor		_	0.7	_	_

Note

1. The internal system frequency is 1728 times the H_{Sync} input frequency for both the Acquisition and Display PLLs.

ORDERING INFORMATION


TYPE		PACKAGE						
NUMBER	NAME	DESCRIPTION	VERSION					
SAB9076H	QFP100 ⁽¹⁾	plastic quad flat package; 100 leads (lead length 1.95 mm); body $14 \times 20 \times 2.8$ mm	SOT317-2					

Note

1. When using IR reflow soldering it is recommended that the Drypack instructions in the "Quality Reference Handbook" (order number 9398 510 63011) are followed.

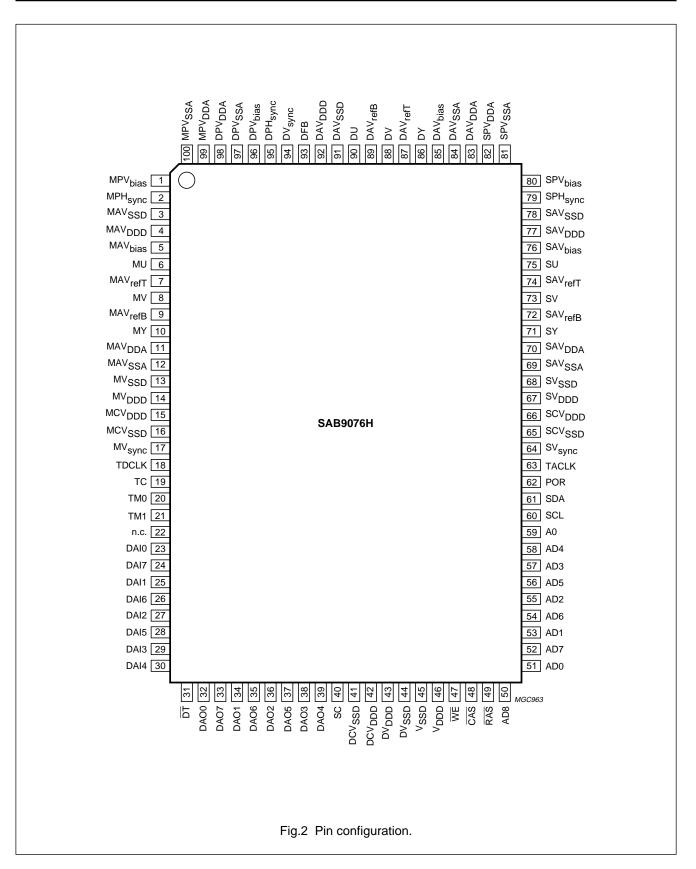
SAB9076H

BLOCK DIAGRAM

SAB9076H

PINNING

SYMBOL	PIN	I/O	TYPE	DESCRIPTION
MPV _{bias}	1	I/O	E027	analog bias reference for main channel
MPH _{sync}	2	I	HPP01	horizontal synchronization input for main channel
MAV _{SSD}	3	I/O	E009	digital ground for main channel ADCs and PLLs
MAV _{DDD}	4	I/O	E030	digital positive power supply for main channel ADCs and PLLs
MAV _{bias}	5	I	E027	analog bias reference input for main channel ADCs
MU	6	I	E027	analog U input for main channel
MAV _{refT}	7	I	E027	analog top reference voltage input for main channel ADCs
MV	8	I	E027	analog V input for main channel
MAV _{refB}	9	I	E027	analog bottom reference voltage input for main channel ADCs
MY	10	I	E027	analog Y input for main channel
MAV _{DDA}	11	I/O	E030	analog positive power supply for main channel ADCs
MAV _{SSA}	12	I/O	E009	analog ground for main channel ADCs
MV _{SSD}	13	I/O	E009	digital ground for main-channel core
MV _{DDD}	14	I/O	E030	digital positive power supply for main-channel core
MCV _{DDD}	15	I/O	E030	digital positive power supply for main-clock buffer
MCV _{SSD}	16	I/O	E009	digital ground for main-clock buffer
MV _{sync}	17	I	HPP01	vertical synchronization input for main channel
TDCLK	18	I	HPP01	test clock input for display
ТС	19	I	HPP01	test control input
TM0	20	I	HPP01	test mode 0 input
TM1	21	I	HPP01	test mode 1 input
n.c.	22	_	_	not connected
DAI0	23	I	HPP01	data bus input from memory; bit 0
DAI7	24	I	HPP01	data bus input from memory; bit 7
DAI1	25	I	HPP01	data bus input from memory; bit 1
DAI6	26	I	HPP01	data bus input from memory; bit 6
DAI2	27	I	HPP01	data bus input from memory; bit 2
DAI5	28	I	HPP01	data bus input from memory; bit 5
DAI3	29	I	HPP01	data bus input from memory; bit 3
DAI4	30	I	HPP01	data bus input from memory; bit 4
DT	31	0	OPF20	memory data transfer output; active LOW
DAO0	32	0	OPF20	data bus output to memory; bit 0
DAO7	33	0	OPF20	data bus output to memory; bit 7
DAO1	34	0	OPF20	data bus output to memory; bit 1
DAO6	35	0	OPF20	data bus output to memory; bit 6
DAO2	36	0	OPF20	data bus output to memory; bit 2
DAO5	37	0	OPF20	data bus output to memory; bit 5
DAO3	38	0	OPF20	data bus output to memory; bit 3
DAO4	39	0	OPF20	data bus output to memory; bit 4
SC	40	0	OPF20	memory shift clock output


SYMBOL	PIN	I/O	TYPE	DESCRIPTION
DCV _{SSD}	41	I/O	E009	digital ground for display-clock buffer
DCV _{DDD}	42	I/O	E030	digital positive power supply for display-clock buffer
DV _{DDD}	43	I/O	E030	digital positive power supply for display core
DV _{SSD}	44	I/O	E009	digital ground for display core
V _{SSD}	45	I/O	E009	digital ground for peripherals
V _{DDD}	46	I/O	E030	digital positive power supply for peripherals
WE	47	0	OPF20	memory write enable output; active LOW
CAS	48	0	OPF20	memory column address strobe output; active LOW
RAS	49	0	OPF20	memory row address strobe output; active LOW
AD8	50	0	OPF20	memory address bus output; bit 8
AD0	51	0	OPF20	memory address bus output; bit 0
AD7	52	0	OPF20	memory address bus output; bit 7
AD1	53	0	OPF20	memory address bus output; bit 1
AD6	54	0	OPF20	memory address bus output; bit 6
AD2	55	0	OPF20	memory address bus output; bit 2
AD5	56	0	OPF20	memory address bus output; bit 5
AD3	57	0	OPF20	memory address bus output; bit 3
AD4	58	0	OPF20	memory address bus output; bit 4
A0	59	I	HPF01	I ² C-bus address 0 selection input
SCL	60	I	HPF01	shift clock input for I ² C-bus
SDA	61	I/O	IOI41	shift I ² C-bus input data; acknowledge I ² C-bus output data
POR	62	I	HUP07	power-on reset input
TACLK	63	I	HPP01	test clock input for acquisition
SV _{sync}	64	I	HPP01	vertical synchronization input for sub-channel
SCV _{SSD}	65	I/O	E009	digital ground for sub-clock buffer
SCV _{DDD}	66	I/O	E030	digital positive power supply for sub-clock buffer
SV _{DDD}	67	I/O	E030	digital positive power supply for sub-channel core
SV _{SSD}	68	I/O	E009	digital ground for sub-channel core
SAV _{SSA}	69	I/O	E009	analog ground for sub-channel ADCs
SAV _{DDA}	70	I/O	E030	analog positive power supply for sub-channel ADCs
SY	71	I	E027	analog Y input for sub-channel
SAV _{refB}	72	I	E027	analog bottom reference input voltage for sub-channel ADCs
SV	73	I	E027	analog V input for sub-channel
SAV _{refT}	74	I	E027	analog top reference input voltage for sub-channel ADCs
SU	75	I	E027	analog U input for sub-channel
SAV _{bias}	76	I/O	E027	analog bias reference input/output for sub-channel ADCs
SAV _{DDD}	77	I/O	E030	digital positive power supply for sub-channel ADCs and PLLs
SAV _{SSD}	78	I/O	E009	digital ground for sub-channel ADCs and PLLs
SPH _{sync}	79	I	HPP01	horizontal synchronization input for sub-channel
SPV _{bias}	80	I/O	E027	analog bias reference input/output for sub-channel
SPV _{SSA}	81	I/O	E009	analog ground for sub-channel PLL

SAB9076H

SYMBOL	PIN	I/O	TYPE	DESCRIPTION
SPV _{DDA}	82	I/O	E030	analog positive power supply for sub-channel PLL
DAV _{DDA}	83	I/O	E030	analog positive power supply for DACs
DAV _{SSA}	84	I/O	E009	analog ground for DACs
DAV _{bias}	85	I	E027	analog bias voltage reference input for DACs
DY	86	0	E027	analog Y output of DAC
DAV _{refT}	87	I	E027	analog top reference input voltage for DACs
DV	88	0	E027	analog V output of DAC
DAV _{refB}	89	I	E027	analog bottom reference input voltage for DACs
DU	90	0	E027	analog U output of DAC
DAV _{SSD}	91	I/O	E009	digital ground for DACs
DAV _{DDD}	92	I/O	E030	digital positive power supply for DACs
DFB	93	0	OPF20	fast blanking control output signal
DV _{sync}	94	I	HPP01	vertical synchronization input for display channel
DPH _{sync}	95	I	HPP01	horizontal synchronization input for display PLL
DPV _{bias}	96	I/O	E027	analog bias voltage reference input/output for display PLL
DPV _{SSA}	97	I/O	E009	analog ground for display PLL
DPV _{DDA}	98	I/O	E030	analog positive power supply for display PLL
MPV _{DDA}	99	I/O	E030	analog positive power supply for main channel PLL
MPV _{SSA}	100	I/O	E009	analog ground for main channel PLL

Table 1Pin type explanation

PIN TYPE	DESCRIPTION
E030	V_{DD} pin; diode to V_{SS}
E009	V_{SS} pin; diode to V_{DD}
E027	analog input pin; diode to V_{DD} and V_{SS}
HPF01	digital input pin; CMOS levels, diode to $V_{\mbox{\scriptsize SS}}$
HPP01	digital input pin; CMOS levels, diode to V_{DD} and V_{SS}
HUP07	digital input pin; CMOS levels with hysteresis, pull-up resistor to V_{DD} , diode to V_{DD} and V_{SS}
IOI41	I ² C-bus pull-down output stage; CMOS input levels, diode to V _{SS}
OPF20	digital output pin; CMOS levels

SAB9076H

FUNCTIONAL DESCRIPTION

Pixel rate

The internal chrominance format used is 4:1:1. It is expected that the bandwidth of the input signals is limited to 4.5 MHz for the Y input and 1.125 MHz for the U/V input.

The Y input is sampled with a $1728 \times HS$ (≈ 27.0 MHz) clock and is filtered and down sampled to the internal $864 \times HS$ (≈ 13.5 MHz) pixel rate.

The U and V inputs are multiplexed and sampled with a $432 \times HS$ clock and down sampled to the internal $216 \times HS$ (≈ 3.375 MHz) pixel rate.

Acquisition area

Synchronisation is achieved via the acquisition H_{Sync} and V_{sync} pins. With the acquisition fine positioning added to a system constant the starting point of the acquisition can be controlled.

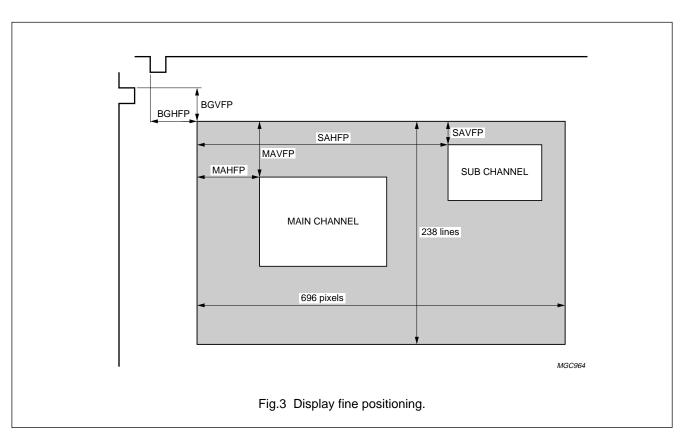
The acquisition area is 672 pixels/line and 228 lines/field for NTSC. Both main and sub-channels are equivalent in handling the data.

Display mode

The internal display pixel rate is $864 \times DPH_{sync}$ which is 13.5 MHz. This pixel rate is up sampled by interpolation to $1728 \times DPH_{sync}$ before the DAC stage.

Display area

The display background is an area of 696 pixels and 238 lines. This can be put on/off by the BGON bit independent of the PIPON bit. This area can be moved by the display background fine positioning (BGHFP and BGVFP registers). Its colour is determined by the BGCOL and BGBRT registers.


Within this area PIPs are defined dependent on the PIP mode. The PIP sizes are determined by the display reduction factors as is shown in Table 2.

The display fine positioning determines the location of the PIPs with respect to the background. Sub-channel and main channel both have their independent PIP size and location control, which is shown in Fig.3.

Table 2PIP sizes

REDUCTION	H/1	H/2	H/3	H/4	V/1	V/2	V/3	V/4
Pixels	672	336	224	168	_	—	_	-
Lines	_	_	—	-	228	114	76	57

SAB9076H

PIP modes

The two independent acquisition channels can be controlled independently on the display side. A wide variety of modes is possible but a subset of 7 modes is fixed and can be set easily by the I^2 C-bus. An overview of the preconditioned modes is given in Table 3. For all PIP modes the main and sub-display fine positioning must be set to obtain a display configuration.

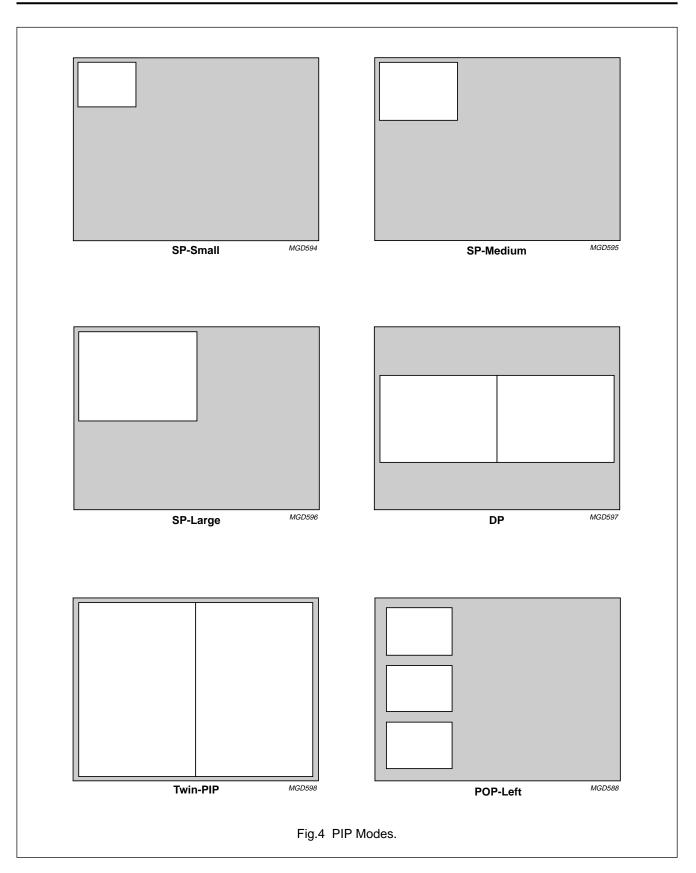
DATA TRANSFER

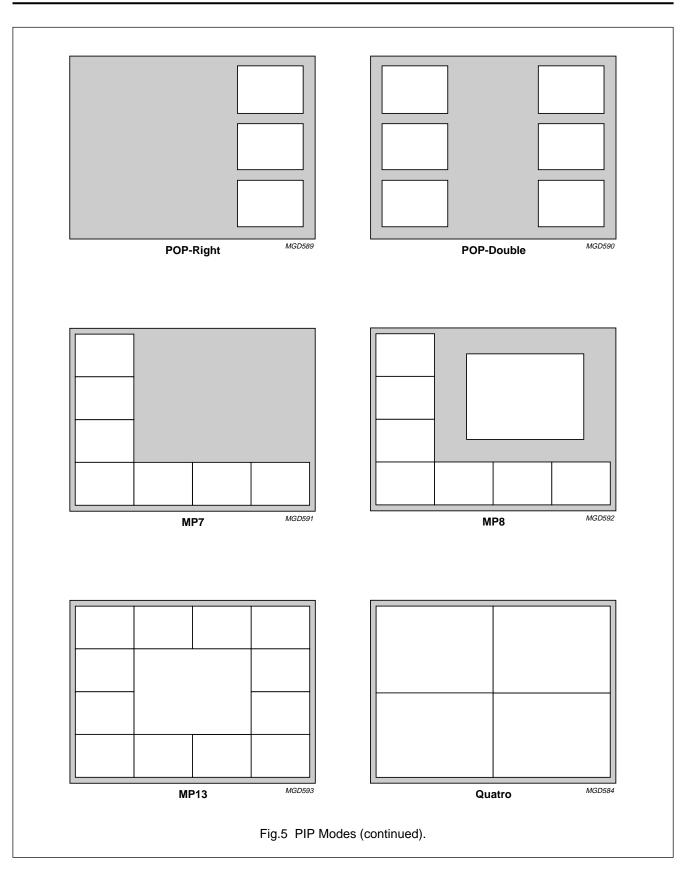
The internal data path has an 8-bit resolution and 4:1:1 data format. The communication to the external VDRAM takes place at $864 \times H_{sync}$ (both display and acquisition).

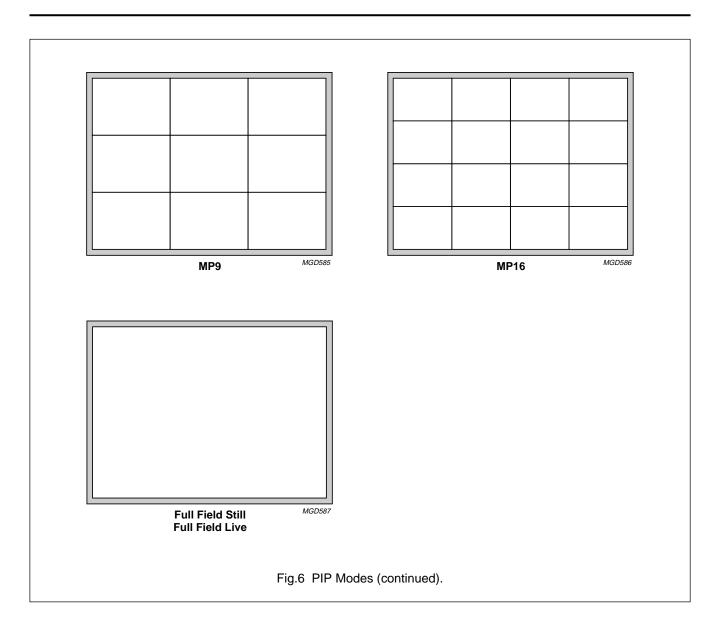
Approximately 800 8-bit words can be fetched from the external VDRAM in one display line which is not enough to display one complete display line with true 8-bit resolution.

Two methods of reducing data are available. One is simply skipping the 8-bit to 6-bit (SKIP6, I²C-bus bit) and the other is a small form of data reduction to come from 8-bit to 6-bit (SMART6, I²C-bus bit). If both bits are set to logic 0 the device is in true 8-bit resolution mode. For the twin PIP mode the main channel is not placed in the VDRAM but in an internal buffer, so still 8-bit resolution is achieved.

SAB9076H


Table 3 PIP modes


	PIP MODES			SUB-CHANNEL		MAIN CHANNEL		SUB-CHANNEL		MAIN CHANNEL	
NAME	FIGURE	MODE	REDH	REDV	REDH	REDV	HFP	VFP	HFP	VFP	
SP	SP small	0000	1⁄4	1⁄4	_	_	_	_	_	_	
SP	SP medium	0000	1/3	1/3	_	_	_	_	_	_	
SP	SP large	0000	1/2	1/2	_	_	_	_	_	_	
SP	SP small	0000	_	_	1⁄4	1/4	_	_	_	_	
SP	SP medium	0000	_	_	1/3	1/3	_	_	_	_	
SP	SP large	0000	_	_	1/2	1/2	_	_	_	_	
DP	DP	0000	1/2	1/2	1/2	1/2	03H	46H	57H	46H	
DP	twin PIP	1001	1/2	1/1	1/2	1/1	03H	05H	57H	05H	
MP3L	POP-left	0010	1⁄4	1⁄4	_	_	08H	46H	_	_	
MR3R	POP-right	0010	_	_	1/4	1/4	_	_	72H	10H	
MR3D	POP-double	0010	1⁄4	1⁄4	1⁄4	1/4	08H	10H	72H	10H	
MP7	POP-double	0011	1⁄4	1⁄4	_	_	03H	05H	_	_	
MP8	MP7	0011	1⁄4	1⁄4	1/2	1/2	03H	05H	44H	20H	
MP4	Quatro	0001	1/2	1/2	1/2	1/2	03H	05H	03H	77H	
MP9	MP9	0100	1/3	1/3	1/3	1/3	03H	05H	51H	3BH	
MP16	MP16	0101	1⁄4	1⁄4	_	_	03H	05H	03H	05H	
MP16	MP16 mix	0110	1⁄4	1⁄4	1⁄4	1/4	03H	05H	03H	77H	
FFS	full field still	0000	1/1	1/1	-	_	03H	05H	_	-	
FFL	full field live	1000	_	_	1/1	1/1	_	_	03H	05H	
MAN	manual	0111	Х	Х	Х	Х	Х	Х	Х	Х	


PIP COMBINATIONS

Figures 4, 5 and 6 provide an overview of possible combinations as they can be shown on the screen. An example of fine positioning is given in the right four columns of Table 3.

More PIP modes can be obtained by varying the horizontal and vertical reduction factors to meet correct aspect ratios when using 16 : 9 screens.

SAB9076H

I²C-bus description

The I²C-bus provides bi-directional 2-line communication between different ICs. The SDA line is the serial data line and SCL serves as serial clock line. Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

The SAB9076H has the I²C-bus addresses 2C and 2E, switchable by the pin A0. Valid Sub-Addresses (SA) are 00H to 18H (Table 4) and 20H to 32H (Table 6).

 $I^2C\mbox{-bus}$ control is in accordance with the $I^2C\mbox{-bus}$ protocol.

First a START sequence must be put on the l^2C -bus, then the l^2C -bus address of the circuit must be send, followed by a subaddress. After this sequence the data of the subaddresses must be sent. An auto-increment function gives the option to send data of the incremented subaddresses until a STOP sequence is send. Table 4 gives an overview of the l^2C -bus addresses.

Table 4Overview of I2C-bus sub-addresses

6.4				DATA	BYTE			
SA	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
00H	MPIPON	SPIPON	MFREEZE	SFREEZE	PIPMODE3	PIPMODE2	PIPMODE1	PIPMODE0
01H	note 1	note 1	M1FLD	S1FLD	note 1	DNONINT	MNONINT	SNONINT
02H	DFILT	FILLOFF	SMART6	SKIP6	YTH3	YTH2	YTH1	YTH0
03H	BGHFP3	BGHFP2	BGHFP1	BGHFP0	BGVFP3	BGVFP2	BGVFP1	BGVFP0
04H	SDHFP7	SDHFP6	SDHFP5	SDHFP4	SDHFP3	SDHFP2	SDHFP1	SDHFP0
05H	SDVFP7	SDVFP6	SDVFP5	SDVFP4	SDVFP3	SDVFP2	SDVFP1	SDVFP0
06H	MDHFP7	MDHFP6	MDHFP5	MDHFP4	MDHFP3	MDHFP2	MDHFP1	MDHFP0
07H	MDVFP7	MDVFP6	MDVFP5	MDVFP4	MDVFP3	MDVFP2	MDVFP1	MDVFP0
08H	MDREDH1	MDREDH0	MDREDV1	MDREDV0	SDREDH1	SDREDH0	SDREDV1	SDREDV0
09H	MAREDH1	MAREDH0	MAREDV1	MAREDV0	SAREDH1	SAREDH0	SAREDV1	SAREDV0
0AH	MAHFP3	MAHFP2	MAHFP1	MAHFP0	SAHFP3	SAHFP2	SAHFP1	SAHFP0
0BH	SAVFP7	SAVFP6	SAVFP5	SAVFP4	SAVFP3	SAVFP2	SAVFP1	SAVFP0
0CH	MAVFP7	MAVFP6	MAVFP5	MAVFP4	MAVFP3	MAVFP2	MAVFP1	MAVFP0
0DH	MLSEL3	MLSEL2	MLSEL1	MLSEL0	SLSEL3	SLSEL2	SLSEL1	SLSEL0
0EH	MBSEL3	MBSEL2	MBSEL1	MBSEL0	SBSEL3	SBSEL2	SBSEL1	SBSEL0
0FH	BHSIZE3	BHSIZE2	BHSIZE1	BHSIZE0	BVSIZE3	BVSIZE2	BVSIZE1	BVSIZE0
10H	note 1	SBON	SBBRT1	SBBRT0	note 1	SBCOL2	SBCOL1	SBCOL0
11H	note 1	SBSON	SBSBRT1	SBSBRT0	note 1	SBSCOL2	SBSCOL1	SBSCOL0
12H	note 1	MBON	MBBRT1	MBBRT0	note 1	MBCOL2	MBCOL1	MBCOL0
13H	note 1	MBSON	MBSBRT1	MBSBRT0	note 1	MBSCOL2	MBSCOL1	MBSCOL0
14H	note 1	BGON	BGBRT1	BGBRT0	note 1	SBGCOL2	SBGCOL1	SBGCOL0
15H	note 1	note 1	note 1	SVFILT	SUVPOL	SVSPOL	SHSYNC	SFPOL
16H	note 1	note 1	note 1	MVFILT	MUVPOL	MVSPOL	MHSYNC	MFPOL
17H	note 1	FBDEL2	FBDEL1	FBDEL0	DUVPOL	DVSPOL	DHSYNC	DFPOL
18H	PEDESTV3	PEDESTV2	PEDESTV1	PEDESTV0	PEDESTU3	PEDESTU2	PEDESTU1	PEDESTU0

Note

1. The data bits which are not used should be set to zero.

SA 00H PIP REGISTER

The MPIPON and SPIPON bits switch respectively the main and sub PIPs of the SAB9076H on or off. The MFREEZE and SFREEZE bits make the current live pictures for the channels main and sub frozen. The writing to the VDRAM is stopped. The PIPMODE3 to PIPMODE0 bits set the PIP mode in accordance with Table 3.

SA 01H DISPLAY REGISTER

The M1FLD and S1FLD⁽¹⁾ bits control the use of the reserved second field in the VDRAM. If this bit is set to logic 0 then address spaces are reserved for both fields in the VDRAM. This avoids joint line errors. Whether these address spaces are used is dependent on the interlacing of the input signals and the three NONINT bits. If a 1FLD bit is set to logic 1 then only 1 address space is used in the VDRAM for both fields. In some PIP modes the use of a second field is not possible since there is not enough space in the VDRAM, in these modes the 1FLD bit must be set to logic 1. DNONINT controls the interlace mode of the display part. If set to logic 1 then data is only read from one field in the VDRAM. If set to logic 0 then both fields (if available) are used for display.

The MNONINT and SNONINT bits control the interlace mode of the acquisition blocks. If set to logic 1 then data is only written to one field in the VDRAM (two fields remain allocated). If set to logic 0 then both fields (if available) are used for acquisition.

SA 02H DISPLAY REGISTER

The DFILT bit controls an interpolating filter that changes the internal 864 pixels data rate to the output data rate of 2×864 pixels. If DFILT is set to logic 1 then the filter is on.

The FILLOFF bit controls filling of PIPs when the PIP mode is switched. If FILLOFF is set to logic 0 then all PIPs are filled with a 30% gray until their channel has been updated. If FILLOFF is set to logic 1 then the VDRAM content is always visible. This is useful when a new, 'similar' to the previous one, PIP mode is set. The previous data can then be displayed.

The SMART6 and SKIP6 bits control the data transfer mode to the external VDRAM. For modes which display a complete line (672 pixels) a type of data reduction has to be carried out.

Two transfer modes are available. One is simply skipping the 8-bit data path to 6-bit (SKIP6). The other is carry out an intelligent data reduction which retains an 8-bit resolution (SMART6). The YTH3 to YTH0 bits control the video output. If the current Y-value is less then YTH \times 16 then the fast blank is switched off, the original live background will be visible. This feature can be used to pick up sub-titles and display them as On-Screen Display (OSD) anywhere on the screen.

SA 03H DISPLAY BACKGROUND FINE POSITIONING REGISTER

The BGHFP3 to BGHFP0 bits control the horizontal display positioning of the background. The resolution is 16 steps of 4 pixels. The BGVFP3 to BGVFP0 bits control the vertical display positioning of the background. The resolution is 16 steps of 2 lines/field. The background fine positioning moves the complete display. It is a general offset of all the PIP pictures and background. It is intended only to adjust once the centring of all PIP modes (see Fig.3).

SA 04H AND SA 05H DISPLAY SUB-CHANNEL FINE POSITIONING REGISTERS

These registers control the horizontal and vertical fine positioning of the display sub-channel with respect to the display background. This is the actual fine positioning (see Fig.3). The horizontal resolution is 256 steps of 4 pixels and the vertical resolution is 256 steps of 1 line/field.

SA 06H AND SA 07H DISPLAY MAIN-CHANNEL FINE POSITIONING REGISTERS

These registers control the horizontal and vertical fine positioning off the display main-channel with respect to the display background. This is the actual fine positioning (see Fig.3). The horizontal resolution is 256 steps of 4 pixels and the vertical resolution is 256 steps of 1 line/field.

SA 08H DISPLAY REDUCTION FACTORS REGISTER

This register sets the display reduction factors, independent of the acquisition reduction factors. It sets the PIP size to a certain default value in such a way that the border drawn around the PIP is just fitting.

SA 09H ACQUISITION REDUCTION FACTORS REGISTER

This register sets the acquisition reduction factors, independent of the display reduction factors. If the HRED is 1 : 1 then the VRED must also be 1 : 1.

Restrictions are:

- The DREDH and AREDH must be the same
- The DREDV is equal or smaller than the AREDV (e.g DREDV is 1 : 2 and AREDV is 1 : 1).

⁽¹⁾ The 1 FLD bits only operate when the NONINT bits of the corresponding channel is set.

SAB9076H

SA 0AH TO SA 0CH ACQUISITION FINE POSITIONING REGISTERS

These registers determine the start of the acquisition area. Horizontal fine positioning can be adjusted with 16 steps of 2 pixels, vertical fine positioning can be adjusted with 256 steps of 1 line/field.

SA 0DH TO SA 0EH SELECTION REGISTERS

The MLSEL3 to MLSEL0 and SLSEL3 to SLSEL0 bits control which PIP is live. Both main channel and sub-channel can have one live PIP. Counting is carried out from upper-left to lower-right.

The MBSEL3 to MBSEL0 and SBSEL3 to SBSEL0 bits control which PIP border has a different colour. Both main channel and sub-channel can have a different PIP channel border selection. Counting is done from upper-left to lower-right.

SA 0FH BORDER SIZE REGISTER

This register controls the border size. The minimum horizontal border is 2 pixels. The minimum vertical border is 1 line. The vertical border size is multiplied by the FH mode number before it is displayed on the screen.

SA 10H AND SA 11H BORDER COLOUR AND BORDER SELECT COLOUR OF SUB-CHANNEL REGISTERS (see Table 5)

If SBON is set to logic 1 then the border of the sub-channel is visible. SBBRT and SBCOL control the brightness and colour of the sub-channel border colour.

If SBSON is set to logic 1 then one sub-PIP border can have a different colour. This border is selected by the SBSEL3 to SBSEL0 bits.

The SBSBRT and SBSCOL bits control the brightness and colour off the sub-border selection colour.

SA 12H AND SA 13H BORDER COLOUR AND BORDER SELECTION COLOUR OF MAIN CHANNEL REGISTERS (see Table 5)

If MBON is set to logic 1 then the border of the main channel is visible.

The MBBRT and MBCOL bits control the brightness and colour of the main-channel border colour.

If MBSON is set to logic 1 then one main PIP border can have a different colour. This border is selected by the MBSEL3 to MBSEL0 bits.

The MBSBRT and MBSCOL bits control the brightness and colour off the main-border selection colour.

SA 14H BACKGROUND CONTROL REGISTER (see Table 5)

If BGON is set to logic 1 then the background is visible.

BGBRT and BGCOL registers control the brightness and colour of the background colour.

SAB9076H

COLOU	IR TYPE	BRIGHTNESS LEVEL						
COLOUR	VALUE	4H	5H	6H	7H			
Black	0H	0%	10%	30%	50%			
Blue	1H	30%	50%	70%	100%			
Red	2H	30%	50%	70%	100%			
Magenta	3H	30%	50%	70%	100%			
Green	4H	30%	50%	70%	100%			
Cyan	5H	30%	50%	70%	100%			
Yellow	6H	30%	50%	70%	100%			
White	7H	60%	70%	80%	100%			

Table 5 Colour types and brightness levels

Table 5 indicates how I²C-bus register settings control the colour and brightness. All colour registers are similar, they contain one on/off bit, two brightness bits and three colour type bits. To determine which colour is visible in the event two or more colours being displayed on the same position, the next priority scheme is followed.

- 1. Sub-select colour (SBS)
- 2. Sub-border colour (SB)
- 3. Main-select colour (MBS)
- 4. Main-border colour (MB)
- 5. Background colour (BG).

SA 15H AND SA 16H DECODER REGISTERS

The MVFILT and SVFILT bits can set the type of vertical filtering. The MUVPOL and SUVPOL bits invert the UV polarity of the incoming signals. The MVSPOL and SVSPOL bits determine the active edge of the V_{sync} (see Fig.7). MHSYNC and SHSYNC bits determine the timing of the H_{sync} pulse (burstkey or H_{sync} timing). The MFPOL and SFPOL bits can invert the field identification (ID) of the incoming fields (see Fig.7).

SA 17H DISPLAY SETTINGS REGISTER

The FBDEL2 to FBDEL0 bits can adjust the fast blank delay in 8 steps of $\frac{1}{2}$ a clock cycle (–8 to +7). 0H is mid-scale. The DUVPOL bit inverts the UV polarity of the border colours.

The DVSPOL bit determines the active edge of the V_{sync} (see Fig.7). The DHSYNC bit determines the timing of the H_{sync} pulse (burstkey or H_{sync}). The DFPOL bit can invert the field identification of the incoming fields (see Fig.7).

SA 18H PEDESTAL SETTINGS REGISTER

The PEDESTU3 to PEDESTU0 and PEDESTV3 to PEDESTV0 bits provide the U and V DAC outputs an offset of -8 to +7 LSB when the FBL is switched off. This can be used to adjust the white point of the system.

SAB9076H

Additional I²C-bus settings

64				DATA	BYTE			
SA	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
20H	PRIO	note 1	note 1	note 1	MVRPN1	MVRPN0	SVRPN1	SVRPN0
21H	MHRPO31	MHRPO30	MHRPO21	MHRPO20	MHRPO11	MHRPO10	MHRPO01	MHRPO00
22H	MHRPN31	MHRPN30	MHRPN21	MHRPN20	MHRPN11	MHRPN10	MHRPN01	MHRPN00
23H	MHPIC7	MHPIC6	MHPIC5	MHPIC4	MHPIC3	MHPIC2	MHPIC1	MHPIC0
24H	MVPIC7	MVPIC6	MVPIC5	MVPIC4	MVPIC3	MVPIC2	MVPIC1	MVPIC0
25H	MHDIS07	MHDIS06	MHDIS05	MHDIS04	MHDIS03	MHDIS02	MHDIS01	MHDIS00
26H	MHDIS17	MHDIS16	MHDIS15	MHDIS14	MHDIS13	MHDIS12	MHDIS11	MHDIS10
27H	MHDIS27	MHDIS26	MHDIS25	MHDIS24	MHDIS23	MHDIS22	MHDIS21	MHDIS20
28H	MHDIS37	MHDIS36	MHDIS35	MHDIS34	MHDIS33	MHDIS32	MHDIS31	MHDIS30
29H	MVDIS7	MVDIS6	MVDIS5	MVDIS4	MVDIS3	MVDIS2	MVDIS1	MVDIS0
2AH	SHRPO31	SHRPO30	SHRPO21	SHRPO20	SHRPO11	SHRPO10	SHRPO01	SHRPO00
2BH	SHRPN31	SHRPN30	SHRPN21	SHRPN20	SHRPN11	SHRPN10	SHRPN01	SHRPN00
2CH	SHPIC7	SHPIC6	SHPIC5	SHPIC4	SHPIC3	SHPIC2	SHPIC1	SHPIC0
2DH	SVPIC7	SVPIC6	SVPIC5	SVPIC4	SVPIC3	SVPIC2	SVPIC1	SVPIC0
2EH	SHDIS07	SHDIS06	SHDIS05	SHDIS04	SHDIS03	SHDIS02	SHDIS01	SHDIS00
2FH	SHDIS17	SHDIS16	SHDIS15	SHDIS14	SHDIS13	SHDIS12	SHDIS11	SHDIS10
30H	SHDIS27	SHDIS26	SHDIS25	SHDIS24	SHDIS23	SHDIS22	SHDIS21	SHDIS20
31H	SHDIS37	SHDIS36	SHDIS35	SHDIS34	SHDIS33	SHDIS32	SHDIS31	SHDIS30
32H	SVDIS7	SVDIS6	SVDIS5	SVDIS4	SVDIS3	SVDIS2	SVDIS1	SVDIS0

Note

1. The data bits which are not used should be set to zero.

In Manual mode more PIP modes become available with the help of register 20H to 32H.

An overview of these I²C-bus registers is given in Table 6.

The meaning and relation of the I²C-bus registers is shown in Fig.8. The background has a fixed size and can be fine positioned with the BGHFP and BGHFP bits. The shown PIPs are only for one channel (Main or Sub), the other channel has the same control and can be displayed at the same time. The SDHFP and MDHFP bits determine the most left shown pixel for this channel in 256 steps of 4 pixels. The SDVFP and MDVFP bits determine the most upper shown line for this channel in 256 steps of 1 line. The SHPIC and MHPIC bits determine the horizontal picture size in 256 steps of 4 pixels, the minimum value is 4 pixels. The SVPIC and MVPIC bits determine the vertical picture size in 256 steps of 1 line, the minimum value is 1 line. The PIP mode is built-up of a maximum of four horizontal rows. The minimum is one row, more rows can be displayed by setting the Vertical Repetition Rate Number VRPN bits. The distance between the rows can be set by SVDIS and MVDIS bits. Every row is built-up of a maximum of four PIPs. The minimum is one PIP and the distance between the starting points of those PIPs on a row is determined by SHDIS and MHDIS bits.

SA 20H CONTROL REGISTER

The PRIO bit sets the priority between Main and Sub channel. If PRIO is set to logic 0, priority is given to the Sub channel which means that the Sub channel PIPs, if present, are placed on top of the Main PIPs. If PRIO is set to logic 1, the Main PIPs are set on top of the Sub PIPs. The MVRPN and SVRPN bits determine the number of repeated PIP rows. There is always one row visible of each channel. If no PIPs should be visible the PIP channel must be switched off (SA 00, bit 7 or bit 6).

SAB9076H

SA 21H AND SA 2AH HORIZONTAL REPETITION OFFSET REGISTERS FOR ROW 0 TO 3

The horizontal repetition offsets (MHRPO and SHRPO bits) are strongly related to the horizontal distance (MHDIS and SHDIS bits). These registers set for each row a certain grid of possible starting points for the PIPS in that row. Every grid point has a number 0 (the most left PIP), 1, 2 or 3. The MHRPO and SHRPO bits determine the first PIP number which will be displayed. This mechanism can be set for each row.

SA 22H AND SA 2BH HORIZONTAL REPETITION NUMBER REGISTERS FOR ROW 0 TO 3

The horizontal repetition numbers (MHRPN and SHRPN bits) determine how many times the PIPs are repeated in a row, once the first PIP is displayed. The repeated PIPs stay in the grid determined by the MHDIS and SHDIS bits for that row. This mechanism can be set for each row independent.

SA 23H AND SA 24H; SA 2CH AND SA 2DH PICTURE SIZE REGISTERS

The MHPIC and SHPIC bits determine the horizontal PIP size in 256 steps of 4 pixels. The MVPIC and SVPIC bits determine the vertical PIP size in 256 steps of 1 line.

SA 25H AND SA 29H; SA 2EH AND SA 32H PICTURE DISTANCE REGISTERS

For each row the distance between starting points of PIPs can be set with the bits MHDIS and SHDIS in 256 steps of 4 pixels. The distance between two rows can be set with the MVDIS and SVDIS bits in 256 steps of 1 line.

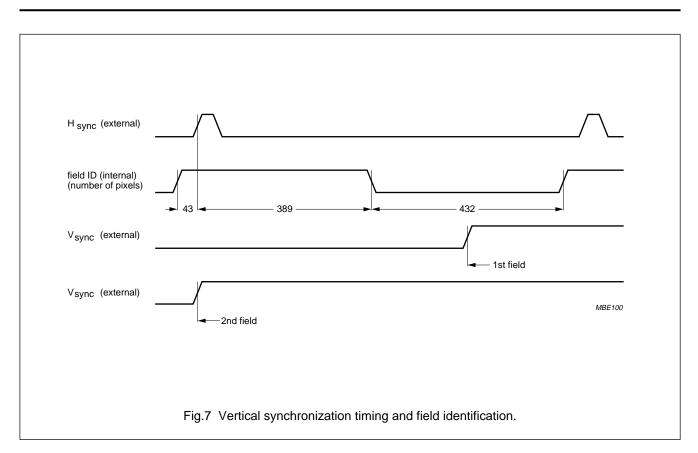
Acquisition Channel ADCs

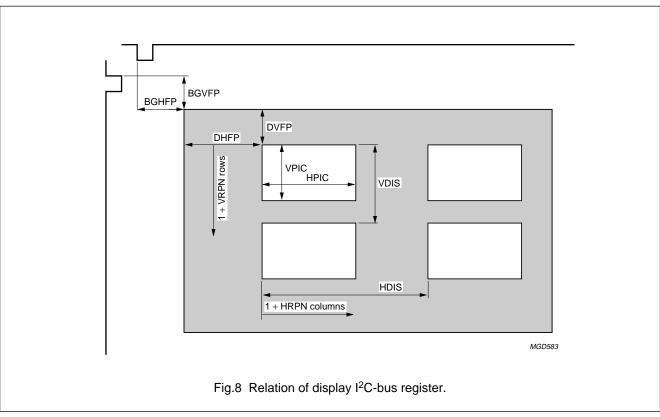
Both channels convert the analog input signals to digital signals by means of two ADCs for each channel. The input levels of the ADCs of each channel are equal and can be set by the AV_{refT} and AV_{refB} pins.

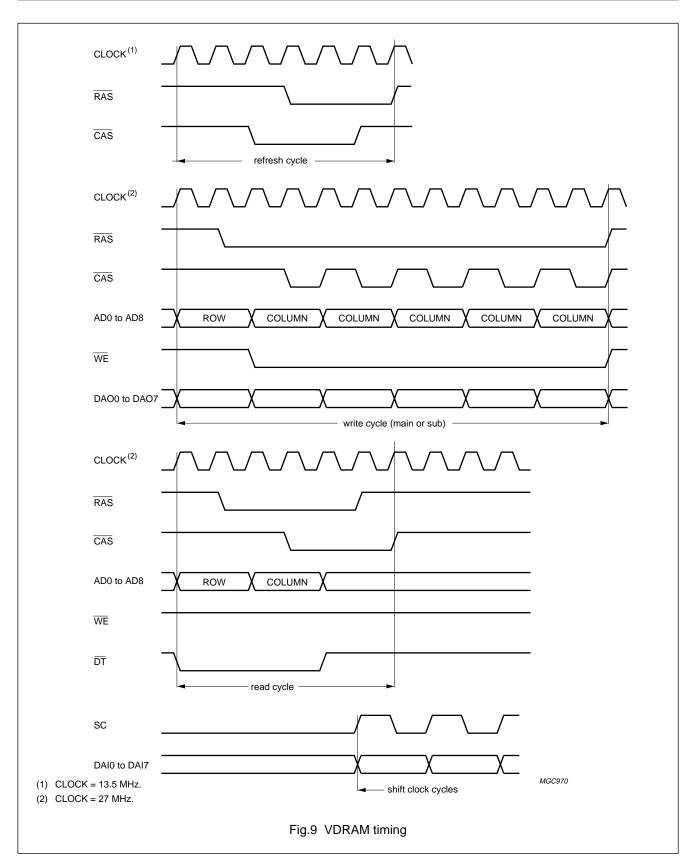
The reference levels are made internally by a resistor network which divides the analog supply voltage to a default set of preferred levels. External capacitors are needed to filter AC components on the reference levels. The resolution of the ADCs is 8 bit. Differential Non-Linearity (DNL) is 7-bit; Integral Non-Linearity (INL) is 6-bit, and the sampling is carried out at the system frequency of 27 MHz for the Y input. The U/V inputs are multiplexed and sampled at 13.5 MHz. The analog input signals are amplified to make maximum use of the dynamic range of the ADCs. A bias voltage V_{bias} is used for decoupling AC components on internal references. The inputs should be AC-coupled and an internal clamping circuit will clamp the input to AV_{refB} for the luminance

channels and to
$$\frac{AV_{refT} - AV_{refB}}{2} + \frac{LSB}{2}$$
 for the

chrominance channels. The clamping starts at the active edge of the burst key.


Output DACs


The digitally processed signals are converted to analog signals by three 8-bit DACs. The output voltages of these DACs are default set by the DAV_{refT} pin for the top level and DAV_{refB} pin for the bottom level. Default values are 1.5 V.


External Memory

For the external memory two VDRAMs of type Mitsubishi M5M442256 are used. They have a storage capacity of 262 144 words of 4-bit each and will be used in parallel.

It is also possible to use a 2 Mbit VDRAM with a storage capacity of 262 144 words of 8 bit each. An overview of the timing diagrams is given in Fig.9.

SAB9076H

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	
V _{DD}	supply voltage	-0.5	+6.5	V	
P _{max}	maximum power dissipation		1.5	W	
T _{stg}	storage temperature	-25	+150	°C	
T _{amb}	operating ambient temperature	-25	+70	°C	
V _{esd}	electrostatic discharge handling				
	Human body model		3000 ⁽¹⁾	V	
	Machine model		300 ⁽²⁾	V	

Note

- 1. Human body model: see *UZW-B0/FQ-B302*; The numbers of the quality specification can be found in the "*Quality Reference Handbook*". The handbook can be ordered using the code 9397 750 00192.
- 2. Machine model: see *UZW-B0/FQ-A302*; The numbers of the quality specification can be found in the "*Quality Reference Handbook*". The handbook can be ordered using the code 9397 750 00192.

THERMAL CHARACTERISTICS

SYMBOL PARAMETER		CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	in free air	34	K/W

QUALITY SPECIFICATION

In accordance with "SNW-FQ-611 part E". The numbers of the quality specification can be found in the "Quality Reference Handbook". The handbook can be ordered using the code 9397 750 00192.

SAB9076H

CHARACTERISTICS

 V_{DD} = 5.0 V; T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				-	•	-
V _{DD}	all positive supply voltages		4.5	5.0	5.5	V
V _{SS}	all ground voltages		-	0	_	V
$\Delta V_{DD(max)}$	maximum difference between supply voltages		_	0	100	mV
$\Delta V_{SS(max)}$	maximum difference between ground voltages		_	0	100	mV
IDDDQ	quiescent current of digital supply voltages	note 1	-	0	50	μA
IMPVDDA	main PLL supply current		-	6	_	mA
I _{SPVDDA}	sub PLL supply current		-	6	_	mA
I _{DPVDDA}	display PLL supply current		-	6	_	mA
I _{MAVDDA}	main ADCs supply current		-	40	_	mA
I _{SAVDDA}	sub ADCs supply current		_	40	_	mA
I _{DAVDDA}	display DACs supply current		-	20	_	mA
I _{DDA(tot)}	total analog supply current		-	115	_	mA
I _{DDD(tot)}	total digital supply current		-	100	_	mA
Analog-to-	digital converter and clamping	•	•			-
V _{refT}	top reference voltage	note 2	1.9	2.1	2.3	V
V _{refB}	bottom reference voltage	note 2	0.3	0.4	0.5	V
V _{i(Y,U,V)(p-p)}	input signal amplitude (peak-to peak value)	note 2	1.2	1.5	1.6	V
li	input current	clamping off	-	0.1	_	μA
		clamping on	-	100	_	μA
Ci	input capacitance		_	5	_	pF
f _s	sample frequency rate	note 3	-	1728HS	_	MHz
RES	resolution		6	8	_	bit
DNL	differential non-linearity		-2.0	-	+2.0	LSB
INL	integral non-linearity		-4.0	-	+4.0	LSB
α _{cs}	channel separation		-	48	_	dB
PSRR	power supply rejection ratio		-	48	_	dB
V _{clampY}	clamping voltage level Y	note 4	-	V _{refB}	_	V
V _{clampUV}	clamping voltage level U/V		_	note 5	_	V

SAB9076H

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Digital-to-analog converter and output stage								
V _{refT}	top reference voltage		2.2	2.3	2.4	V		
V _{refB}	bottom reference voltage		0.3	0.4	0.5	V		
V _{o(Y,U,V)}	output signal amplitude	note 6	-	1.5	1.6	V		
RL	load resistance	note 6	75	220	10×10^3	Ω		
CL	load capacitance		0	-	50	pF		
f _s	sample frequency rate	note 3	-	1728HS	_	MHz		
RES	resolution		6	8	8	bit		
DNL	differential non-linearity		-1.0	-	+1.0	LSB		
INL	integral non-linearity		-1.0	-	+1.0	LSB		
α_{cs}	channel separation		-	48	_	dB		
PSRR	power supply rejection ratio		-	48	_	dB		
PLL and cl	ock generation acquisition			•		•		
f _{i(PLL)}	input frequency	note 3	14	15.75	18	kHz		
PLL and cl	ock generation display							
f _{i(PLL)}	input frequency	note 3	14	15.75	18	kHz		

Notes

- 1. Digital clocks are silent, POR is V_{DD} .
- 2. The V_{refT} and V_{refB} are made by a resistor division of the V_{DD} . They can be calculated with the formulas:

$$V_{refT} = AV_{DD} \times \left(\frac{2.0}{5.0}\right) V$$
 and $V_{refB} = AV_{DD} \times \left(\frac{0.4}{5.0}\right) V$

The analogue supply voltages are 5 V.

3. The internal system frequency is 1728 times the H_{sync} input frequency for both the acquisition and display PLLs.

4. The Y-channel is clamped to the V_{refB} of the ADCs.

- 5. The UV-channel is clamped to $^{1}/_{2}(V_{refT} + V_{refB} + V_{LSB})$.
- 6. The gain of the SAB9076H is 1 under the condition that the R_L is 220 Ω .

SAB9076H

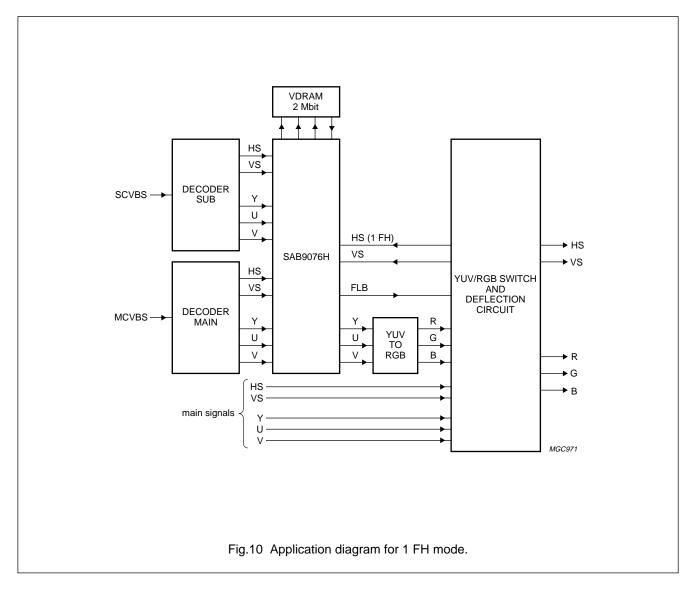
DC CHARACTERISTICS FOR THE DIGITAL PART

 V_{DDD} = 4.5 to 5.5 V (all V_{DDD} pins); T_{amb} = -20 to +75 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	HIGH level input voltage	HPF01	70	_	-	%V _{DD}
		HPP01	70	_	-	%V _{DD}
		HUP07	80	_	-	%V _{DD}
		IOI41	70	_	-	%V _{DD}
V _{IL}	LOW level input voltage	HPF01	_	_	30	%V _{DD}
		HPP01	-	_	30	%V _{DD}
		HUP07	_	_	20	%V _{DD}
		IOI41	-	_	30	%V _{DD}
V _{hys}	hysteresis voltage	HUP07	-	33	-	%V _{DD}
V _{OH}	HIGH level output voltage	OPF20; $I_{OL} = -2 \text{ mA}$; $V_{DDD} = 4.5 \text{ V}$	4.1	_	-	V
V _{OL}	LOW level output voltage	IOI41; I _{OL} = +4 mA; V _{DDD} = 4.5 V	-	_	0.4	V
		OPF20; I _{OL} = +2 mA; V _{DDD} = 4.5 V	-	-	0.4	V
I _{LI}	input leakage current	HPF01; V _{DDD} = 5.5 V; note 1	-	0.1	1	μA
		HPP01; V _{DDD} = 5.5 V; note 1	-	0.1	1	μA
I _{oz}	3-state output leakage current	IOI41; V _{DDD} = 5.5 V; note 1	-	0.2	5	μA
R _{pu}	internal pull-up resistor	HUP07	17	-	134	kΩ

Note

1. V_i is attached to the V_{DDD} or V_{SSD} .


AC CHARACTERISTICS FOR THE DIGITAL PART

 V_{DDD} = 4.5 to 5.5 V (all V_{DDD} pins); T_{amb} = -20 to +75 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f _{sys}	system frequency	acquisition; note 1	_	27	30	MHz
		display; note 1	_	27	30	MHz
t _r	rise time		_	6	25	ns
t _f	fall time		_	6	25	ns

Note

1. The internal system frequency is1728 times the H_{sync} input frequency for both the acquisition and display PLLs.

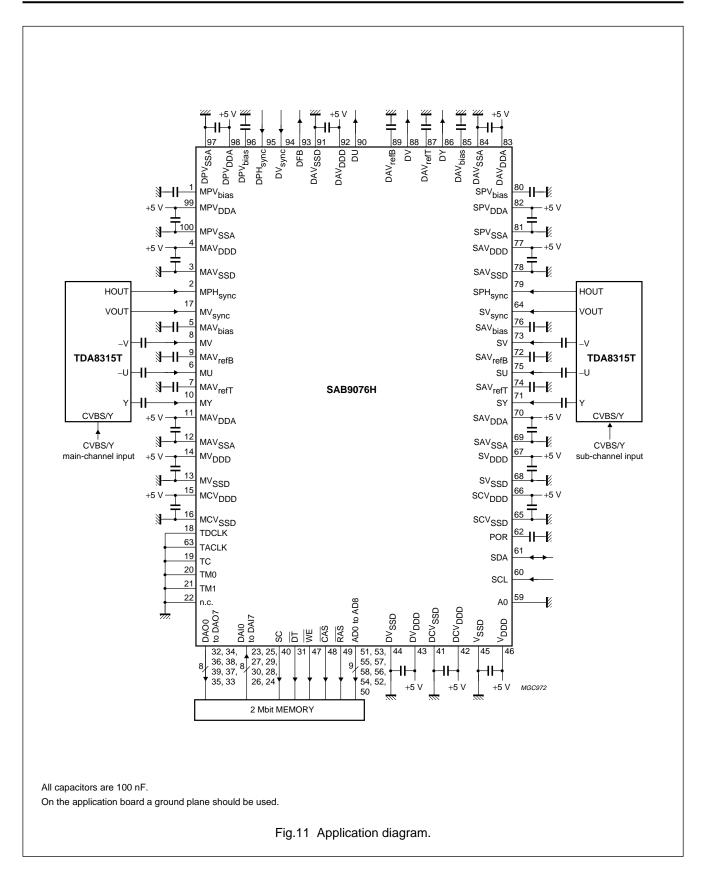
The application diagram for 1 FH mode in a standard

MCVBS and SCVBS of different sources are processed by

configuration is shown in Fig.10. Two input signals

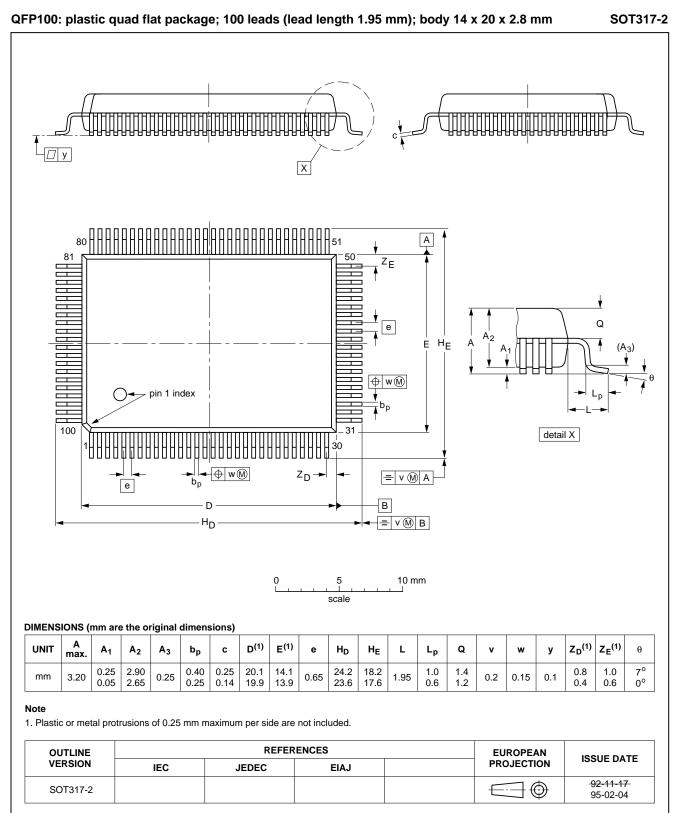
TEST AND APPLICATION INFORMATION

SAB9076H


The synchronization of the display PLL is derived from the deflection circuit. The main signals are also fed to the

deflection circuit and the YUV/RGB switch where the

deflection can also be taken from the main channel or


SAB9076H signals can be inserted. The signals for

sub-channel decoder.

SAB9076H

PACKAGE OUTLINE

SAB9076H

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all QFP packages.

The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our "Quality Reference Handbook" (order code 9397 750 00192).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering is **not** recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

SAB9076H

DEFINITIONS

Data sheet status				
Objective specification	bjective specification This data sheet contains target or goal specifications for product development.			
Preliminary specification	Preliminary specification This data sheet contains preliminary data; supplementary data may be published later			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information				

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.