SAA1027

GENERAL DESCRIPTION

The SAA1027 is a bipolar integrated circuit intended for driving a four-phase two-stator motor. The circuit consists of a bidirectional four-state counter and a code converter to drive the four outputs in the sequence required for driving a stepping motor.

Features

- high noise immunity inputs
- clockwise and counter-clockwise operation
- reset facility
- high output current
- outputs protected against damage by overshoot.

QUICK REFERENCE DATA

Supply voltage range	V _{CC}	9,5 to 18 V		
Supply current, unloaded	Icc	typ.	4.5 mA	
Input voltage, all inputs HIGH	V _{IH}	min.	7.5 V	
LOW	V_{IL}	max.	4.5 V	
Input current, all inputs, LOW	IIL	typ.	30 μΑ	
Output current LOW	loL	max.	500 mA	
Operating ambient temperature range	T_{amb}	-20 1	to + 70 °C	

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38A).

STEPPER MOTOR DRIVER

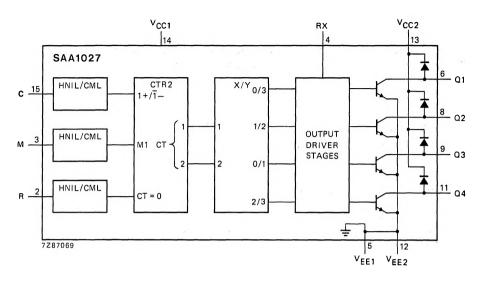
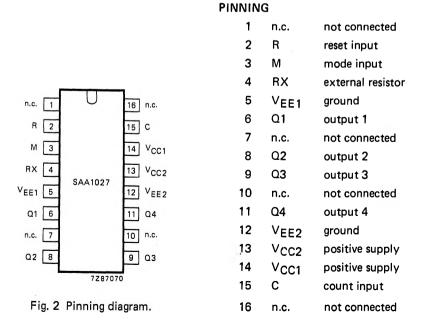



Fig. 1 Block diagram. The blocks marked HNIL/CML are high noise immunity input stages, the block marked CTR2 is a bidirectional synchronous 2-bit (4-state) counter and the block marked X/Y is a code converter. C is the count input, M the mode input to select forward or reverse counting and R is the reset input which resets the counter to content zero.

STEPPER MOTOR DRIVER

SAA1027

FUNCTIONAL DESCRIPTION

Count input C (pin 15)

The outputs change state after each L to H signal transition at the count input.

Mode input M (pin 3)

With the mode input the sequence of output signals, and hence the direction of rotation of the stepping motor, can be chosen, as shown in the following table.

counting	M = L			M = H				
sequence	Ω1	Ω2	Q3	Q4	Q1	Ω2	Q3	Q4
0	L	Н	L	Н	L	Н	L	Н
1	Н	L	L	н	L	н	Н	L
2	Н	L	Н	L	Н	L	Н	L
3	L	Н	Н	L	Н	L	L	н
0	L	Н	L	Н	L	Н	L	н

Reset input R (pin 2)

A LOW level at the R input resets the counter to content zero. The outputs take on the levels shown in the upper and lower line of the table above.

If this facility is not used the R input should be connected to the supply.

External resistor pin RX (pin 4)

The external resistor R4 connected to RX sets the base current of the output transistors. Its value has to be chosen in accordance with the required output current (see Fig. 5).

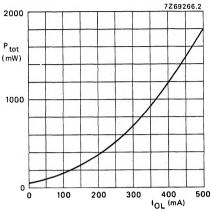
Outputs Q1 to Q4 (pins 6, 8, 9 and 11)

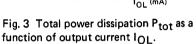
The circuit has open-collector outputs. To prevent damage by an overshooting output voltage the outputs are protected by diodes connected to V_{CC2} , pin 13. High output currents mainly determine the total power dissipation, see Fig. 3.

STEPPER MOTOR DRIVER

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)


Supply voltage, d.c.	V _{CC1} ; V _{CC2}	max.	18	V
Input voltage, all inputs	v_l	max.	18	V
Current into pin 4	^I RX	max.	120	mΑ
Output current	IOL	max.	500	mΑ
Power dissipation	P _{tot}	see Fig.	4	
Storage temperature range	T_{stg}	-40 to	+ 125	οС
Operating ambient temperature range	T _{amb}	-20 1	to + 70	οС


CHARACTERISTICS

 V_{CC} = 9.5 to 18 V; V_{EE} = 0 V; T_{amb} = -20 to 70 °C unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Supply V _{CC1} and V _{CC2} (pins 14 and 13)					
Supply current at V _{CC1} = 12 V; unloaded; all inputs HIGH; pin 4 open	¹cc	2	4.5	6.5	mA
Inputs C, M and R (pins 15, 3 and 2)					
Input voltage HIGH	V	7.5			v
	VIH	7.5	_	4.5	' {
LOW	VIL	_	_	4.5	V
Input current HIGH	ин	_	1	_	μΑ
LOW	-11	_	30	_	μΑ
External resistor pin RX (pin 4)		- 11			
Voltage at RX at V_{CC} = 12 V ± 15%; R4 = 130 Ω ± 5%	V _{RX}	3	-	4.5	v
Outputs Q1 to Q4					
Output voltage LOW					
at I _{OL} = 350 mA	VOL		500	1000	mV
at I _{OL} = 500 mA	VOL	_	700	_	m∨
Output current	02				
LOW	¹ OL	_	_	500*	mA
HIGH at V _Q = 18 V	-1он	_	-	50	μΑ

^{*} See Figs 3 and 4.



Fig. 4 Power derating curve.

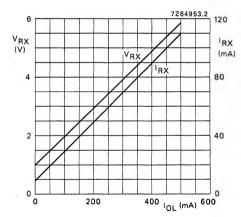


Fig. 5 Current I $_{RX}$ into RX and voltage V $_{RX}$ on RX as a function of required output current I $_{OL}$.

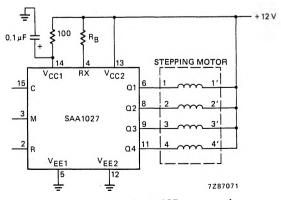


Fig. 6 Typical application of the SAA1027 as a stepping motor driver.