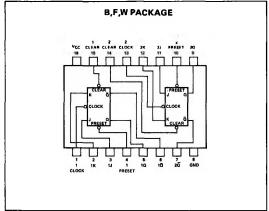


DUAL J-K EDGE-TRIGGERED FLIP-FLOP | \$54\$112

N74S112

\$54\$112-B,F,W • N74\$112-B

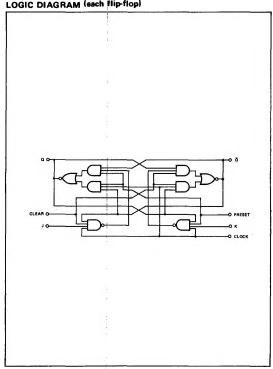
DIGITAL 54/74 TTL SERIES

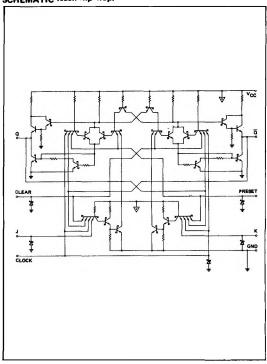

DESCRIPTION

These monolithic dual J-K flip-flops feature individual J, K, clock, and asynchronous preset and clear inputs to each flip-flop. When the clock goes high the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is high and the bistable will perform according to the truth table as long as minimum setup and hold times are observed. Input data are transferred to the outputs on the negativegoing edge of the clock pulse.

TRUTH TABLE

t	'n	t _{n+1}	
J	К	a	†
L	L	an	1
L	Н	L	NOTES:
н	L	н	4
н	н	ā,	A. t_n = bit time before clock pulse B. t_{n+1} = bit time after clock pulse


PIN CONFIGURATIONS


POSITIVE LOGIC

positive logic: Low input to preset sets Q to high level. Low input to clear resets Q to low level. Clear and preset are independent of clock.

LOGIC DIAGRAM (each flip-flop)

SCHEMATIC (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

	\$54S112			N74S112			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply Voltage V _{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N: High logic level			20			20	1
Low logic level			10	1	ŀ	10	ł
Input Clock Frequency, fclock	0		80	0		80	MHz
Width of Clock Pulse, tw(clock)	6	ŀ	Ĭ	6			ns
Width of Preset Pulse, tw(preset)	8			8	1		ns
Width of Clear Pulse, tw(clear)	8			8			ns
Input Setup Time, t _{setup} (See Note 1)	3			3			ns
Input Hold Time, thold (See Note 2)	o			0	1		ns
Operating Free-Air Temperature, TA	-55		125	0		70	°c

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER			MIN	TYP **	MAX	UNIT	
v _{IH}	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	l v
v _i	input clamp voltage	V _{CC} = MIN,	I _I = -18mA			-1.2	v
v _{он}	High-level output voltage		V _{IH} = 2V, \$54\$112 1 _{OH} = -1mA N74\$112	2.5 2.7	3.4 3.4		V
v _{OL}	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8V,	V _{IH} = 2V, I _{OL} = 20 mA			0.5	v
ı _ı	Input current at maximum input voltage	V _{CC} = MAX,				1	mA
ιн	High-level input current	V _{CC} = MAX, V _I = 2.7V	J or K input Clock, preset, or clear			50 100	μА
'IL	Low-level input current	V _{CC} = MAX, V _I = 0.5V	J or K input Clock Preset or clear			-1.6 -4 -7	mA
los	Short-circuit output current			-40	1	-100	mA
^I CC	Supply current	V _{CC} = MAX,	See Note 3		30	50	mA

SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
f _{max}	Maximum clock frequency		80	125		MHz
^t PLH	Propagation delay time, low-to-high- level output, from clear or preset		2	4	7	ns
^t PHL	Propagation delay time, high-to-low- level output, from clear or preset	$C_L = 15pF$, $R_L = 280\Omega$	2	5	7	ns
^t PLH	Propagation delay time, low-to-high- level output, from clock	NOTE 4	2	4	7	ns
^t PHL	Propagation delay time, high-to-low- level output, from clock		2	5	7	ns

^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable

** All typical values are at V_{CC} = 5V, T_A = 25°C.
Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.

NOTES:

- 1. Setup time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
- 2. Hold time is the interval immediately following the negative-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its continued recognition.
- 3. ${\rm I_{CC}}$ is measured with outputs open, clock grounded, and J-K preset and clear at 4.5V.
- 4. Load circuit and waveforms are shown on page 2-293