DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

LOGIC DIAGRAM

NOTES:

1. J $=\mathrm{J} 1 \bullet \mathrm{~J} 2 \bullet \mathrm{~J} 3$
2. $K=K 1 \bullet K 2 \bullet K 3$
3. $t_{n}=$ Bit time before clock pulse.
4. $t_{n+1}=$ Blt time after clock pulse.
5. NC-No Internal Connection.

CLOCK WAVEFORM

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } V_{\text {CC }}: & \begin{array}{l}\text { S54H102 Circuits } \\ \\ \text { N74H102 Circuits }\end{array}\end{array}$	4.5	5	5.5	V
	4.75	5	5.25	\checkmark
$\begin{array}{ll}\text { Operating Free-Air Temperature Range, } T_{A}: & \text { S54H102 Circuits } \\ & \text { N74H102 Circuits }\end{array}$	-55	25	125	${ }^{\circ} \mathrm{C}$
	0	25	70	${ }^{\circ} \mathrm{C}$
	Normalized Fan-Out from each Output, N		10	
Width of Clock Pulse, t (clock)	10			ns
Width of Preset Pulse, $t_{\text {p(preset) }}$	15			ns
Width of Clear Puise, t_{p} (clear)	15			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$ (See Above): Logical 1	10			ns
Logical 0	13			ns
Input Hold Time, thold	0			ns
Clock Pulse Transition Time, \mathbf{t}_{0}			150	ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal			2			V
$V_{\text {in(0) }}$	Input voltage required to ensure logical 0 at any input terminal					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$V_{\text {CC }}=$ MIN,	$I^{\text {load }}=-500 \mu \mathrm{~A}$	2.4	3.2 0.25		v
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{\text {CC }}=$ MIN,	$\mathrm{l}_{\text {sink }}=20 \mathrm{~mA}$		0.25	0.4	V
$I_{\text {in }}(0)$	Logical 0 level input current at J1, J2, J3, K1, K2, K3, preset, or clear	$V_{C C}=$ MAX ,	$V_{\text {in }}=0.4 \mathrm{~V}$		-1	-2	mA
$\mathrm{I}_{\text {in(0) }}$	Logical 0 level input current clock	$V_{C C}=$ MAX ,	$V_{\text {in }}=0.4 \mathrm{~V}$		-3	-4.8	mA
Iin(1)	Logical 1 level input current at	$V_{C C}=M A X$,	$V_{\text {in }}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
Iin(1)	J1, J2, J3, K1, K2, or K3	$V_{C C}=M A X$,	$V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
Iin(1)	Logical 1 level input current at clock	V $V C C=M A X$, V V	$V_{\text {in }}=2.4 \mathrm{~V}$ $V_{\text {in }}=5.5 \mathrm{~V}$	0		1 1	mA
	Logical 1 level input current	$V^{C C}=$ = $=M A X$,	$V_{\text {in }}=2.4 \mathrm{~V}$			100	${ }_{\mu A}$
'in(1)	at preset or clear	$V_{C C}=M A X$,	$V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
IOS	Short-circuit output current**	$V_{C C}=M A X$,	$v_{\text {in }}=0$	-40		-100	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=\mathrm{MAX}$			20	38	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {c clock }}$	Maximum input clock frequency	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	40	50		MHz
${ }^{\text {t }}$ pd1	Propagation delay time to logical 1 level from preset to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		8	12	ns
${ }^{t} \mathrm{pdO}$	Propagation delay time to logical 0 level from clear or preset to output (clock low)	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		23	35	ns
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level from clear or preset to output (clock high)	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		15	20	ns
${ }^{\text {t }}$ pd1	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	5	10	15	ns
${ }^{1} \mathrm{pdO}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	8	16	20	ns

- For conditions shown as MIN or MAX, use the approprlate value specified under recommended operating conditions for the applicable device type.
- Not more then one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second.

1 All typical values are et $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

