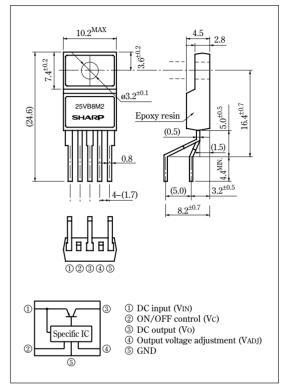
PQ25VB8M2FZ/PQ25VB012FZ

Variable Output Type, Low Power-Loss Voltage Regulator with Built-in Overheat Shut-down Function


Features

- Compact resin full mold package (Equivalent to TO-220)
- Low power-loss (Dropout voltage: MAX. 0.5V at Io=0.5A)
- Overheat shut-down function (keep shut-down output until power-on again)
- Variable output voltage (setting range: 1.5 to 25V)
- With built-in overcurrent protection
- Reference voltage precision: ±2.0%
- With built-in ON/OFF control function

Applications

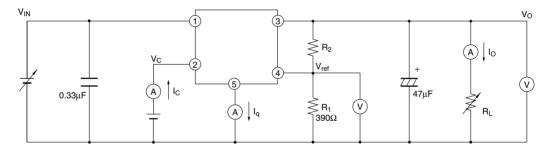
- Series power supply for TVs and VCRs
- Power supplies for equipment
- CRT displays

Outline Dimensions (Unit : mm)

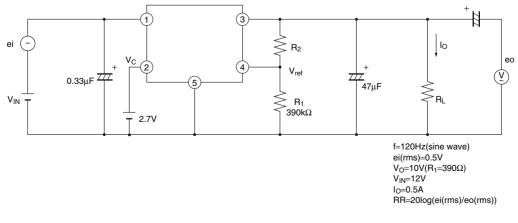
Absolut	js	(Ta=25°C)			
Parameter		Symbol	Rating	Unit	
*1Input voltage		VIN	27	V	
*1 ON/OFF control terminal voltage		Vc	27	V	
*1 Output adjustment terminal voltage		VADJ	7	V	
Output current	PQ25VB8M2FZ	Io	0.8	A	
	PQ25VB012FZ	10	1		
*2Power dissipation		PD1	1.25	W	
		PD2	12.5	W	
*3 Junction temperature		Tj	150	°C	
Operating temperature		Topr	-20 to +80	°C	
Storage temperature		Tstg	-40 to +150	°C	
Soldering temperature		Tsol	260 (10s)	°C	
341.411			1		

*1 All are open except GND and applicable terminals

#2 P_{D1}:No heat sink, P_{D2}:With infinite heat sink #3 Overheat shut-down function operates at Tj≥110°C


• Please refer to the chapter " Handling Precautions ".

SHARP


Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP device. Shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Internet address for Electronic Components Group http://sharp-world.com/ecg/

Electrical Charact	eristics (Unle	ess otherwis	e specified, condition shall be VIN=12V, Vo=10V	(R1=3900	2), Io=0.5A	, Vo=2.7V	, Ta=25°C)
Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Minimum operating supply voltage		VIN(MIN.)	_	4.5	-	27	V
Output voltage		Vo	_	1.5	-	25	V
Load regulation	PQ25VB8M2FZ	RegL	Io=5mA to 0.8A		0.3	1.0	%
	PQ25VB012FZ	RegL	Io=5mA to 1A] -			
Line regulation		RegI	VIN=11 to 20V, Io=5mA	-	0.5	1.0	%
Ripple rejection		RR	Refer to Fig.2	45	55	-	dB
Reference voltage		Vref	-	1.225	1.25	1.275	V
Reference voltage temperature coefficient		TcVref	Tj=0 to 110°C, Io=5mA	-	±1.0	-	%
Dropout voltage		VI-0	*4Io=0.5A	-	-	0.5	V
*5ON-state voltage for control		VC (ON)	*5	2.0	-	-	V
ON-state current for control		IC (ON)	Vc=2.7V	-	-	20	μΑ
OFF-state voltage for control		Vc (OFF)	_	-	-	0.8	V
OFF-state current for control		IC (OFF)	Vc=0.4V	-	-	-0.4	mA
Quiescent current		Iq	Io=0A	-	-	7	mA
Overheating shutdown temperature		Tsd	_	110	130	150	°C

Fig.1 Test Circuit

Fig.2 Test Circuit for Ripple Rejection

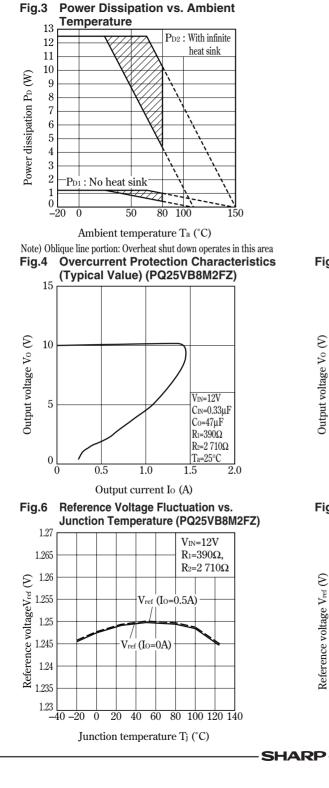


Fig.5 Overcurrent Protection Characteristics (Typical Value) (PQ25VB012FZ)

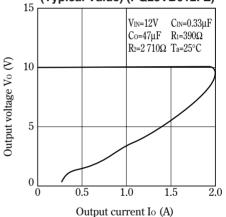
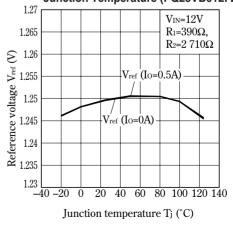
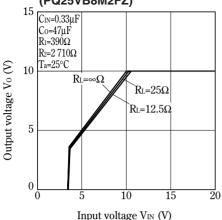
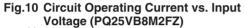
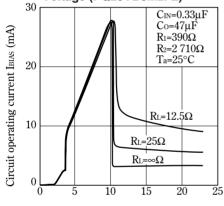
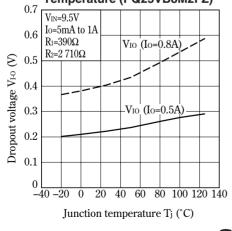






Fig.7 Reference Voltage Fluctuation vs. Junction Temperature (PQ25VB012FZ)



Input voltage VIN (V)

Fig.12 Dropout Voltage vs. Junction Temperature (PQ25VB8M2FZ)

PQ25VB8M2FZ/PQ25VB012FZ

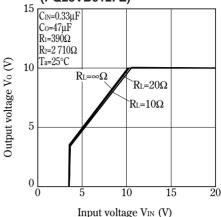
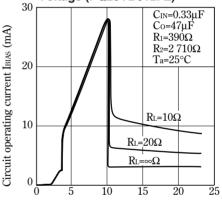
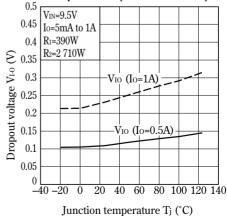
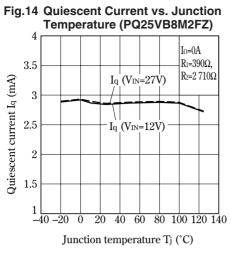
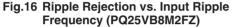
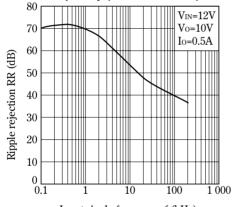




Fig.11 Circuit Operating Current vs. Input Voltage (PQ25VB012FZ)




Input voltage VIN (V)


Fig.13 Dropout Voltage vs. Junction Temperature (PQ25VB012FZ)

SHARP

Input ripple frequency f (kHz)

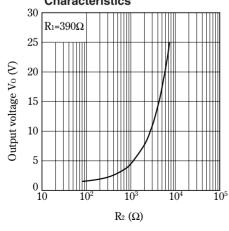
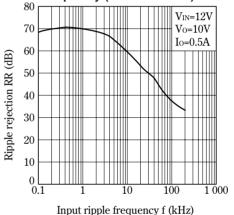


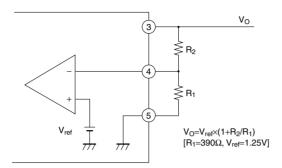
Fig.17 Ripple Rejection vs. Input Ripple Frequency (PQ25VB012FZ)

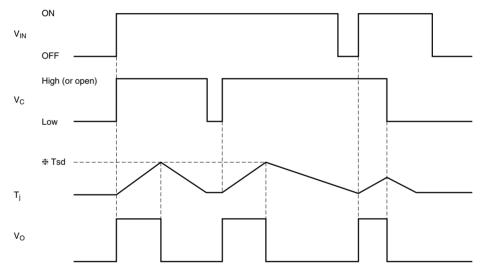

Junction temperature T_j (°C)

40 60 80 100 120 140

1

-40 - 20


0 20



Setting of Output Voltage

Output voltage is able to set from 1.5V to 25V when resistors R_1 and R_2 are attached to (3, 4), (5) terminals. As for the external resistors to set output voltage, refer to the figure below and Fig.18.

Overheat Shut-down Characteristics

 $Tsd:Overheat shut-down temperature (Tj \ge 110°C)$

(1) Overheat shut-down operates at Tj=Tsd and output OFF-state is maintained.

(2) OFF-state is kept until VIN is once turned off.

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- --- Space applications
- --- Telecommunication equipment [trunk lines]
- --- Nuclear power control equipment
- --- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.