

SLES021 - NOVEMBER 2001

24-BIT, 192-kHz SAMPLING ADVANCED SEGMENT, AUDIO STEREO DIGITAL-TO-ANALOG CONVERTER

FEATURES

- 24-Bit Resolution
- Analog Performance (V_{CC} = 5 V):
 - Dynamic Range: 117 dB (Typically)
 - SNR: 117 dB (Typically)
 - THD+N: 0.0004% (Typically)
 - Full-Scale Output (At Post Amp): 2.2-Vrms
- Differential Current Output: ±2.48 mA
- 8× Oversampling Digital Filter:
 - Stop-Band Attenuation: -82 dB
 - Pass-Band Ripple: ±0.002 dB
- Sampling Frequency of 10 kHz to 200 kHz
- System Clock: 128, 192, 256, 384, 512, or 768 f_S With Auto Detect
- Accepts 16-, 20-, and 24-Bit Audio Data
- Data Formats: Standard, I²S, and Left-Justified
- Digital De-Emphasis
- Soft Mute
- Zero Flags for Each Output
 - Dual Supply Operation:
 - 5 V for Analog
 - 3.3 V for Digital
- 5-V Tolerant Digital Inputs
- Small 28-Lead SSOP Package

APPLICATIONS

- A/V Receivers
- DVD Movie Players
- SACD Player
- HDTV Receivers
- Car Audio Systems
- Digital Multi-Track Recorders
- Other Applications Requiring 24-Bit Audio

DESCRIPTION

The PCM1730 is a CMOS, monolithic integrated circuit that includes stereo digital-to-analog converters and support circuitry in a small 28-lead SSOP package. The data converters utilize Texas Instruments' advanced segment DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. The PCM1730 provides balanced current outputs, allowing the user to optimize analog performance externally. Sampling rates up to 200 kHz are supported.

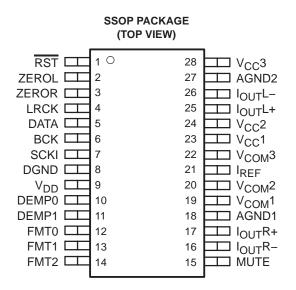
PRODUCT	PACKAGE DRAWING NUMBER		OPERATING TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER [†]					
DOMAZOOF		00000	0500 1- 0500	DOMAZOOF	PCM1730E					
PCM1730E	28-Lead SSOP	28DB	–25°C to 85°C	PCM1730E	PCM1730E/2K					

[†] Models with a slash (/) are available only in tape and reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces of PCM1730E/2K will get a single 2000-piece tape and reel.

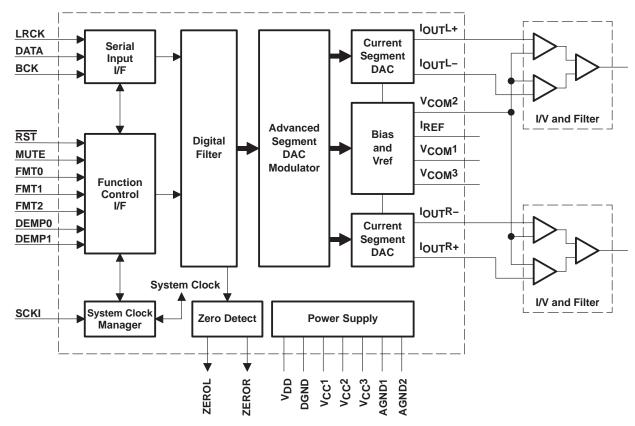
PACKAGE/ORDERING INFORMATION

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SLES021 - NOVEMBER 2001

pin assignments

functional block diagram

TEXAS INSTRUMENTS www.ti.com

SLES021 - NOVEMBER 2001

Terminal Functions

TERMINAL			
NAME	PIN	1/0	DESCRIPTION
AGND1	18	-	Analog ground
AGND2	27	-	Analog ground
BCK	6	Ι	Bit clock input [†]
DATA	5	Ι	Serial audio data input [†]
DEMP0	10	Ι	De-emphasis control [‡]
DEMP1	11	Ι	De-emphasis control [‡]
DGND	8	-	Digital ground
FMT0	12	Ι	Audio data format select [†]
FMT1	13	Ι	Audio data format select [†]
FMT2	14	Ι	Audio data format select [†]
IOUTL-	26	0	L-channel analog current output –
IOUTL+	25	0	L-channel analog current output +
IOUTR-	16	0	R-channel analog current output –
IOUTR+	17	0	R-channel analog current output +
IREF	21	-	Output current reference bias pin. Connect a 16-k Ω resistor to GND.
LRCK	4	Ι	Left and right clock $(f_S)^{\dagger}$
MUTE	15	Ι	Analog output mute control [†]
RST	1	Ι	Reset [†]
SCKI	7	Ι	System clock input [†]
VCC1	23	-	Analog supply, 5 V
V _{CC} 2	24	-	Analog supply, 5 V
V _{CC} 3	28	-	Analog power supply, 5 V
VCOM1	19	-	Internal bias decoupling pin
VCOM2	20	-	Common voltage for I/V
V _{COM} 3	22	-	Internal bias decoupling pin
V _{DD}	9	-	Digital supply, 3.3 V
ZEROL	2	0	Zero flag for L-channel
ZEROR	3	0	Zero flag for R-channel

[†] Schmitt-trigger input, 5-V tolerant
 [‡] Schmitt-trigger input with internal pulldown, 5-V tolerant

SLES021 - NOVEMBER 2001

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage: V_{CC} 1, V_{CC} 2, V_{CC} 3 Supply voltage: V_{DD} Supply voltage differences: V_{CC} 1, V_{CC} 2, and V_{CC} 3 Ground voltage differences: AGND1, AGND2, and DGND	
Digital input voltage: LRCK, DATA, BCK, SCKI, DEMP0, DEMP1, FMT0, FMT1,	
FMT2, RST, and MUTE	–0.3 V to 6.5 V
Digital input voltage: ZEROL, ZEROR	–0.3 V to (V _{DD} + 0.3 V)
Analog input voltage:	-0.3 V to (V _{CC} + 0.3 V)
Input current (any pins except supplies)	±10 mA
Ambient temperature under bias, T _A	–40°C to 125°C
Storage temperature, T _{stg}	
Junction temperature, T ₁	
Lead temperature (soldering)	
Package temperature (IR reflow, peak)	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics, all specifications at $T_A = 25^{\circ}C$, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$, $f_S = 44.1 \text{ kHz}$, system clock = 256 f_S and 24-bit data (unless otherwise noted)

			PC	PCM1730E				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
RESOLUTION				24		Bits		
DATA	FORMAT	• •						
	Audio data interface format		Standard,	I ² S, left jus	tified			
	Audio data bit length		16, 20, 24	I-bits selecta	able			
	Audio data format		MSB first,	2's compler	ment			
fS	Sampling frequency		10		200	kHz		
	System clock frequency 128, 192, 256, 384, 512, 768 fg							
DIGIT	AL INPUT/OUTPUT	•						
	Logic family		TTL	compatible				
VIH	High-level input logic level		2			VDC		
VIL	Low-level input logic level				0.8	VDC		
IIН		$V_{IN} = V_{DD}$			10			
۱ _{IL}	Input logic current (see Note 1)	$V_{IN} = 0 V$			-10	μA		
IIН		$V_{IN} = V_{DD}$		65	100			
۱ _{۱L}	Input logic current (see Note 2)	V _{IN} = 0 V	-10			μA		
∨он	High-level output logic level	$I_{OH} = -2 \text{ mA}$	2.4			VDC		
VOL	Low-level output logic level	I _{OL} = 2 mA			1	VDC		

NOTES: 1. Pins 1, 4, 5, 6, 7, 12, 13, 14, and 15: RST, LRCK, DATA, BCK, SCKI, FMT0, FMT1, FMT2, and MUTE

2. Pins 10 and 11: DEMP0, DEMP1

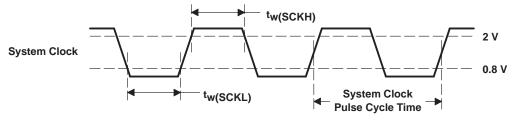
electrical characteristics, all specifications at $T_A = 25^{\circ}$ C, $V_{CC} = 5$ V, $V_{DD} = 3.3$ V, $f_S = 44.1$ kHz, system clock = 256 f_S and 24-bit data (unless otherwise noted) (continued)

	PARAMETER	TEOT COND		PCM1730E		UNIT	
	PARAMETER	TEST COND	MIN	TYP	MAX	UNIT	
DYNAM	IC PERFORMANCE (see Note 3)		<u>.</u>				
			f _S = 44.1 kHz		0.0004%	0.008%	
THD+N	Total harmonic distortion plus noise	VOUT = 0 dB	f _S = 96 kHz		0.0006%		
	10130		f _S = 192 kHz		0.0012%		
		EIAJ, A-weighted, f _S = 44.1	kHz	114	117		
	Dynamic range	EIAJ, A-weighted, fg = 96 k	Hz				dB
		EIAJ, A-weighted, fg = 192	kHz	1	117		
		EIAJ, A-weighted, fS = 44.1	kHz	114	117		
	Signal-to-noise ratio	EIAJ, A-weighted, fg = 96 k	Hz				dB
	-	EIAJ, A-weighted, f _S = 192	kHz		117		
		f _S = 44.1 kHz		110	115		
	Channel separation	f _S = 96 kHz		113		dB	
		f _S = 192 kHz		111		1	
	Level linearity error	V _{OUT} = -110 dB			±1		dB
DC ACC	URACY						
	V _{COM} 2 voltage				2.45		V
	V _{COM} 2 output current	Delta V _{COM} 2 < 5%			100		μA
	Gain error				±2		%/FSR
	Gain mismatch, channel-to- channel				±0.5		%/FSR
	Bipolar zero error	At BPZ			±0.5		%/FSR
ANALO	G OUTPUT						
	Output current	Full scale (-0 dB)			±2.48		mA _{p-p}
	Center current	BPZ input			0		mA _{p-p}
DIGITAL	FILTER PERFORMANCE—FILT						
		±0.002 dB				0.454 fs	
	Pass band	–3 dB				0.49 fs	
	Stop band			0.546 fs			
	Pass-band ripple			-75		±0.002	dB
		Stop band = 0.546 fs		1			dB
	Stop-band attenuation	Stop band = $0.567 \text{ f}_{\text{S}}$		-82			dB
	Delay time				29/f _S		S
	De-emphasis error				0	±0.1	dB

NOTE 3: Analog performance specifications are measured by audio precision II under averaging mode. At 44.1-kHz operation, measurement bandwidth is limited to 20 kHz. At 96-kHz and 192-kHz operation, measurement bandwidth is limited to 40 kHz.

SLES021 - NOVEMBER 2001

electrical characteristics, all specifications at $T_A = 25^{\circ}C$, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$, $f_S = 44.1 kHz$, system
clock = 256 f _S and 24-bit data (unless otherwise noted)(continued)


			P	CM1730E		· · · · · · · · · · · · · · · · · · ·	
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
POWE	R SUPPLY REQUIREMENTS						
V _{DD}			3	3.3	3.6		
VCC	Voltage range		4.75	5	5.25	VDC	
		f _S = 44.1 kHz		7	9.8		
IDD		f _S = 96 kHz	6 kHz 15 92 kHz 30	1			
		f _S = 192 kHz		30] .	
	Supply current	f _S = 44.1 kHz		33	46.2	mA	
ICC		f _S = 96 kHz		34.5	.5		
		f _S = 192 kHz		36.5		1	
		f _S = 44.1 kHz		188	263		
PD	Power dissipation	f _S = 96 kHz		222		mW	
		f _S = 192 kHz		282		1	
TEMP	ERATURE RANGE						
	Operation temperature		-25		85	°C	
θJA	Thermal resistance	28-pin SSOP		100		°C/W	

functional description

system clock and reset functions

The PCM1730 requires a system clock for operating the digital interpolation filters and advanced segment DAC modulators. The system clock is applied at the SCKI input (pin 7). The PCM1730 has a system clock detection circuit, which automatically senses if the system clock is operating at 128 f_S to 768 f_S . Table 1 shows examples of system clock frequencies for common audio sampling rates.

Figure 1 shows the timing requirements for the system clock input. For optimal performance, it is important to use a clock source with low phase jitter and noise. Texas Instruments' PLL1700 multi-clock generator is an excellent choice for providing the PCM1730 system clock.

PARAMETER					
System clock pulse width high, tw(SCKH)	5	ns			
System clock pulse width high, tw(SCKL)	5	ns			

Figure 1. System Clock Input Timing

system clock and reset functions (continued)

SAMPLING FREQUENCY		SYST	EM CLOCK FREG	K FREQUENCY (f _{SCLK}) (MHz)					
SAMPLING FREQUENCY	128 f _S	192 f _S	256 fS	384 fs	512 fS	768 f _S			
32 kHz	4.096	6.144	8.192	12.288	16.384	24.576			
44.1 kHz	5.6488	8.4672	11.2896	16.9344	22.5792	33.8688			
48 kHz	6.144	9.216	12.288	18.432	24.576	36.864			
96 kHz	12.288	18.432	24.576	36.864	49.152	73.728			
192 kHz	24.576	36.864	49.152	73.728	See Note 4	See Note 4			

Table 1. System Clock Rates for Common Audio Sampling Frequencies

NOTE 4: This system clock rate is not supported for the given sampling frequency.

power-on and external reset functions

The PCM1730 includes a power-on reset function. Figure 2 shows the operation of this function. The system clock input at SCKI should be active for at least one clock period prior to $V_{DD} = 2$ V. With the system clock active and $V_{DD} > 2$ V, the power-on reset function will be enabled. The initialization sequence requires 1024 system clocks from the time $V_{DD} > 2$ V. The PCM1730 also includes an external reset capability using the RST input (pin 1). This allows an external controller or master reset circuit to force the PCM1730 to initialize to its reset state. Figure 3 shows the external reset operation and timing. The RST pin is set to logic 0 for a minimum of 20 ns. The RST pin is then set to a logic 1 state, which starts the initialization sequence, which requires 1024 system PCM1730 power up and system clock activation. In this case, the RST pin should be held at a logic 0 level until the system clock has been activated. The RST pin may then be set to logic 1 state to start the initialization sequence.

SLES021 - NOVEMBER 2001

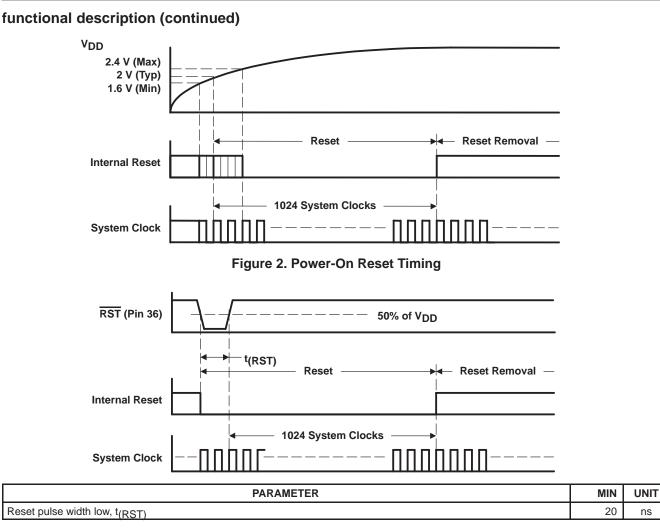


Figure 3. External Reset Timing

ns

audio data interface

audio serial interface

The audio serial interface for the PCM1730 is comprised of a 3-wire synchronous serial port. It includes LRCK (pin 4), BCK (pin 6), and DATA (pin 5). BCK is the serial audio bit clock, and it is used to clock the serial data present on DATA into the audio interface's serial shift register. Serial data is clocked into the PCM1730 on the rising edge of BCK. LRCK is the serial audio left/right word clock. It is used to latch serial data into the serial audio interface's internal registers.

LRCK should be synchronous with the system clock. In the event these clocks are not synchronized, the PCM1730 can compensate for the phase difference internally. If the phase difference between LRCK and SCKI is greater than 6-bit clocks (BCK), the synchronization is performed internally. While the synchronization is processing, the analog output is forced to bipolar zero level. The synchronization typically occurs in less than one cycle of LRCK.

Ideally, it is recommended that LRCK and BCK be derived from the system clock input or output, SCKI or SCKO. The left/right clock, LRCK, is operated at the sampling frequency, fs.

audio data formats and timing

The PCM1730 supports industry-standard audio data formats, including standard right-justified, I²S, and left-justified. The data formats are shown in Figure 4. Data formats are selected by using the FMT2 (pin 14), FMT1 (pin 13) and FMT0 (pin 12) as shown in Table 2. All formats require binary 2's complement, MSB-first audio data. Figure 5 shows a detailed timing diagram for the serial audio interface.

FMT2 (PIN 14)	FMT1 (PIN 13)	FMT0 (PIN 12)	FORMAT			
Low	Low	Low	16-bit standard format, right-justified			
Low	Low	High	20-bit standard format, right-justified			
Low	High	Low	24-bit standard format, right-justified			
Low	High	High	24-bit MSB-first, left-justified format			
High	Low	Low	16-bit I ² S format			
High	Low	High	24-bit I ² S format			
High	High	Low	Reserved			
High	High	High	Reserved			

Table 2. Audio Data Format Select

zero detect

When the PCM1730 detects that the audio input data in L-channel or R-channel is continuously zero for 1024 f_S , the PCM1730 sets ZEROL (pin 2) or ZEROR (pin 3) to high.

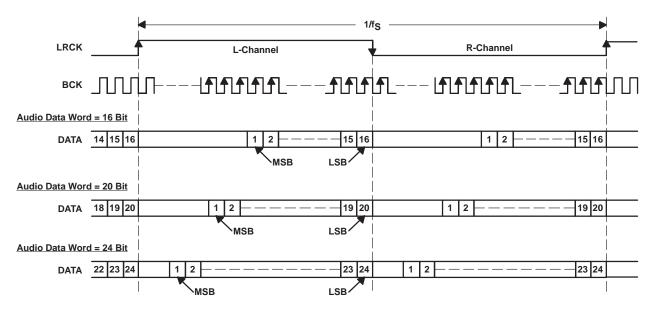
soft mute

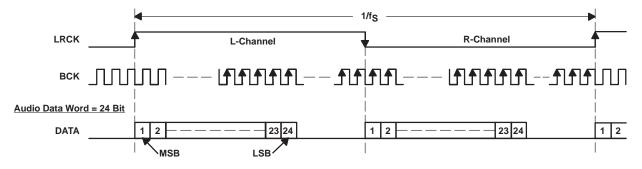
The PCM1730 supports mute operation. When MUTE (pin 15) is set to HIGH, both analog outputs are turned to bipolar zero levels by -0.5-dB steps with transition speed of $1/f_S$ per step. This system provides pop-free muting of DAC output.

de-emphasis

The PCM1730 supports de-emphasis filter performance for sampling frequency 32 kHz, 44.1 kHz, 48 kHz. Sampling frequency is selectable by using DEMP1 (pin 11) DEMP0 (pin 10) as shown in Table 3.

DEMP1 (PIN 11)	DEMP0(PIN 10)	DE-EMPHASIS FUNCTION
Low	Low	Disabled
Low	High	48 kHz
High	Low	44.1 kHz
High	High	32 kHz


Table 3. De-Emphasis Control


SLES021 – NOVEMBER 2001

functional description (continued)

(1) Standard Data Format (Right Justified); L-channel = High, R-channel = Low

(2) Left Justified Data Format: L-channel = High, R-channel = Low

(3) I²S Data Format: L-channel = Low, R-channel = High

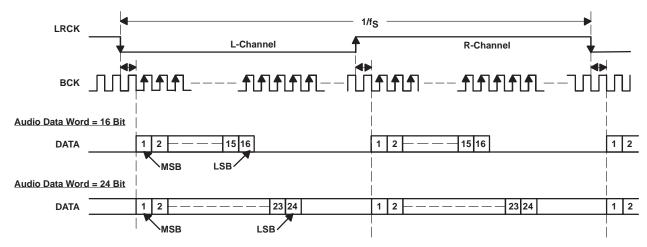
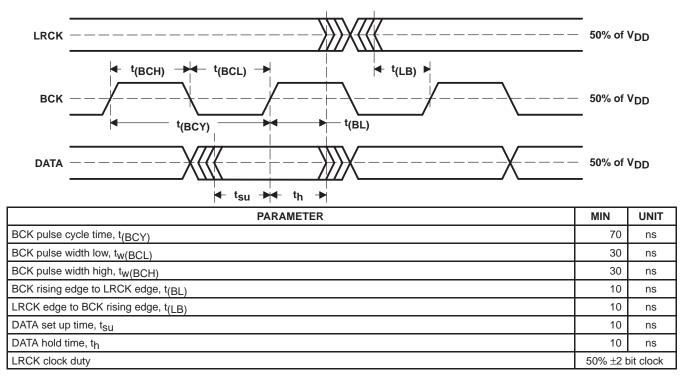
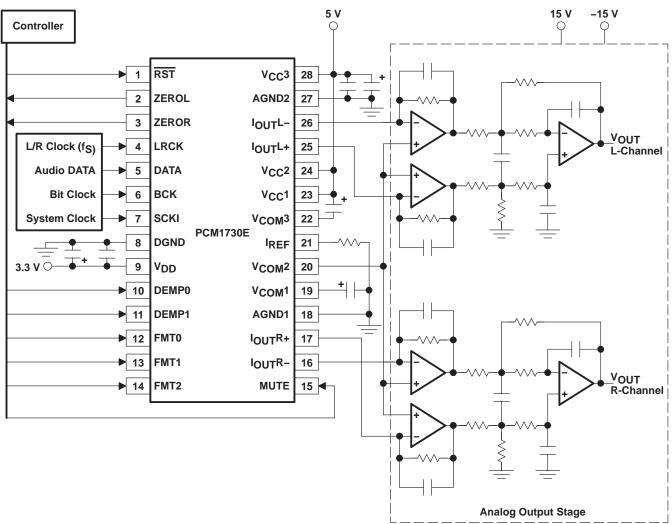



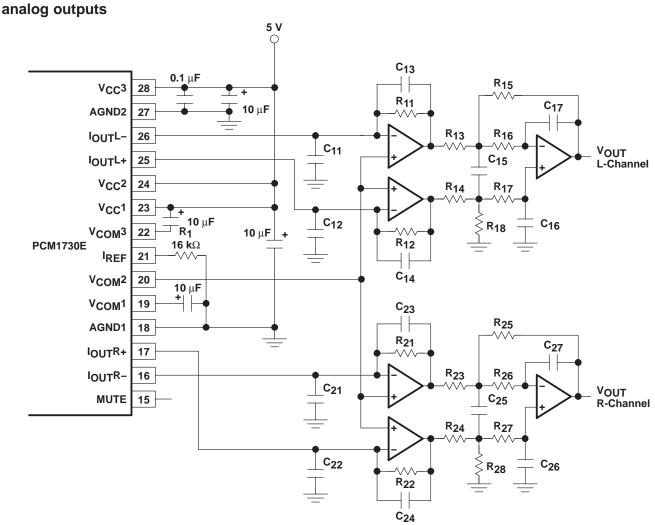
Figure 4. Audio Data Input Formats

SLES021 - NOVEMBER 2001

functional description (continued)



SLES021 - NOVEMBER 2001


typical connection diagram

NOTE: Regarding R/C values for analog output stage, see Figure 9.

Figure 6. Typical Application Circuit for Standard PCM Audio Operation

SLES021 - NOVEMBER 2001

NOTE: Example R/C values for f_C 45 kHz

R₁₁–R₁₈, R₂₁–R₂₈: 620 Ω, C₁₁, C₁₂, C₂₁, C₂₂: not populated, C₁₃, C₁₄, C₂₃, C₂₄: 5600 pF, C₁₅, C₂₅: 8200 pF, C₁₆, C₁₇, C₂₆, C₂₇: 1800 pF

Figure 7. Typical Application for Analog Output Stage

analog output level and I/V converter

The signal level of DAC current output pins (I_{OUT}L+, I_{OUT}L-, I_{OUT}R+, I_{OUT}R-) is±2.48 mAp-p at 0 dB (full scale). The voltage output of the I/V converter is given by following equation:

 $V_{OUT} = \pm 2.48 \text{ mAp}-p \times R_{f}$

Here, R_f is the feedback resistor in the I/V conversion circuit, R₁₁, R₁₂, R₂₁, R₂₂ on typical application circuit. The common level of the I/V conversion circuit must be same as common level of DAC I_{OUT} which is given by V_{COM} 2 reference voltage, which is 2.48 V dc typically. The noninverting inputs of the op amps shown in the I/V circuits are connected to V_{COM} 2 to provide the common bias voltage.

SLES021 - NOVEMBER 2001

op amp for I/V converter circuit

OPA627BP/BM or NE5534 type op amp is recommended for I/V conversion circuit to obtain specified audio performance. Dynamic performance such as gain bandwidth, settling time and slew rate of op amp gives audio dynamic performance at I/V section. Input noise specification of op amp should be considered to obtain 120 dB S/N ratio.

analog gain by balanced amp

The I/V converters are followed by balanced amplifier stages, which sum the differential signals for each channel, creating a single-ended voltage output. In addition, the balanced amplifiers provide a second-order low pass filter function, which band limits the audio output signal. The cutoff frequency and gain are given by the external R and C component values. In this case, the cutoff frequency is 45 kHz with a gain of 1. The output voltage for each channel is 6.2 Vp-p, or 2.2 Vrms.

reference current resistor

As shown in the analog output application circuit, there is a resistor connected from I_{REF} (pin 21) to analog ground, designated as R_1 . This resistor sets the current for the internal reference circuit. The value of R_1 must be 16 k $\Omega \pm 1\%$ in order to match the specified gain error shown in the specifications table.

theory of operation

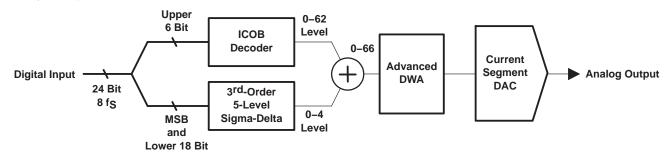


Figure 8. Advanced Segments DAC

The PCM1730 utilizes Texas Instruments' newly developed advanced segment DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. The PCM1730 provides balanced current outputs, allowing the user to optimize analog performance externally.

Digital input data via digital filter separates into the upper 6 bits and lower the 18 bits. The upper 6 bits are converted to ICOB (inverted complementary offset binary) code. The lower 18 bits associated with the MSB are processed by five level third order delta-sigma modulator operated at 64 f_S. The one level of the modulator is equivalent to the 1 LSB of the above code converter. The data groups processed in the ICOB converter and third order delta-sigma modulator are summed together to be created over the 64 level digital code, and then processed in DWA (data weighted averaging) to reduce noise produced by element mismatch. The data of over 64 level via DWA is converted to analog output in the differential current segment portion.

This architecture has overcome the various drawbacks of conventional multi-bit and also achieves excellent dynamic performance.

considerations for application circuit

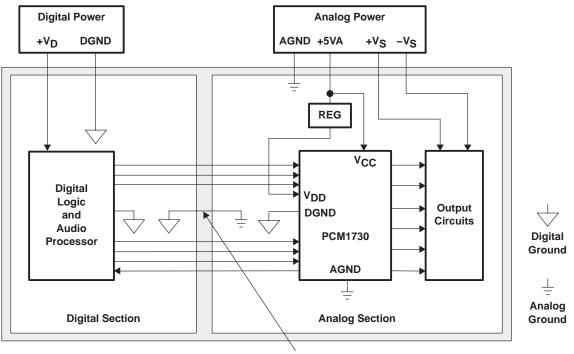
PCB layout guidelines

A typical PCB floor plan for the PCM1730 is shown in Figure 9. A ground plane is recommended, with the analog and digital sections being isolated from one another using a split or cut in the circuit board. The PCM1730 should be oriented with the digital I/O pins facing the ground plane split/cut to allow for short, direct connections to the digital audio interface and control signals originating from the digital section of the board.

PCB layout guidelines (continued)

Separate power supplies are recommended for the digital and analog sections of the board. This prevents the switching noise present on the digital supply from contaminating the analog power supply and degrading the dynamic performance of the D/A converters. In cases where a common 5-V supply must be used for the analog and digital sections, an inductance (RF choke, ferrite bead) should be placed between the analog and digital 5-V supply connections to avoid coupling of the digital switching noise into the analog circuitry. Figure 10 shows the recommended approach for single-supply applications.

bypass and decoupling capacitor requirements


Various-sized decoupling capacitors can be used, with no special tolerances being required. All capacitors should be located as close to the appropriate pins of the PCM1730 as possible to reduce noise pickup from surrounding circuitry. Aluminum electrolytic capacitors that are designed for hi-fi audio applications are recommended for larger values, while metal-film or monolithic ceramic capacitors are used for smaller values.

I/V section

I/V conversion circuit by op amp IC and feedback resistor should achieve excellent performance of the PCM1730. To obtain 0.0004% THD+N, 117-dB signal-to-noise ratio audio performance, THD+N and input noise performance by the op amp IC should be considered, especially if the input noise of the op amp directly gives output noise level of the application. The I_{OUT}- pin on the PCM1730 and the inverted input on the I/V amp should be connected as short distance.

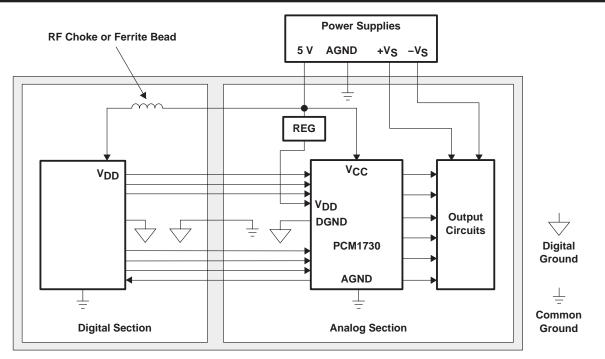
post LPF design

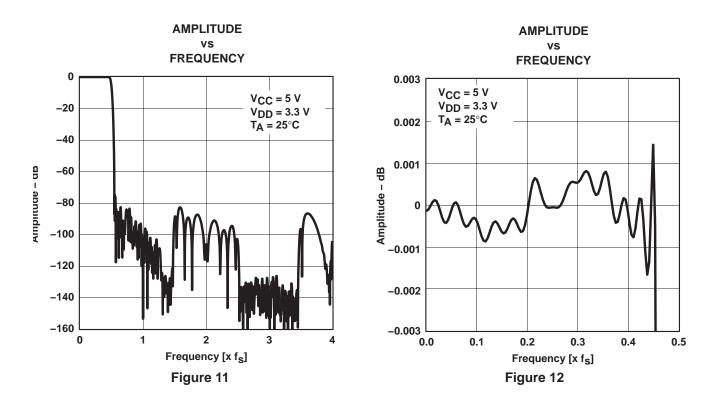
Out-band noise level and attenuated sampling spectrum level are much lower than typical delta-sigma type DAC due to the combination of a high-performance digital filter and advanced segment DAC architecture. Second-order or third-order post LPF is recommended as post LPF of the PCM1730. Cutoff frequency of post LPF is depends on applications to that there are many sampling rate operation such as $f_S = 44.1$ kHz on CDDA, $f_S = 96$ kHz on DVD–M, $f_S = 192$ kHz on DVD–A.

Return Path for Digital Signals

Figure 9. Recommended PCB Layout

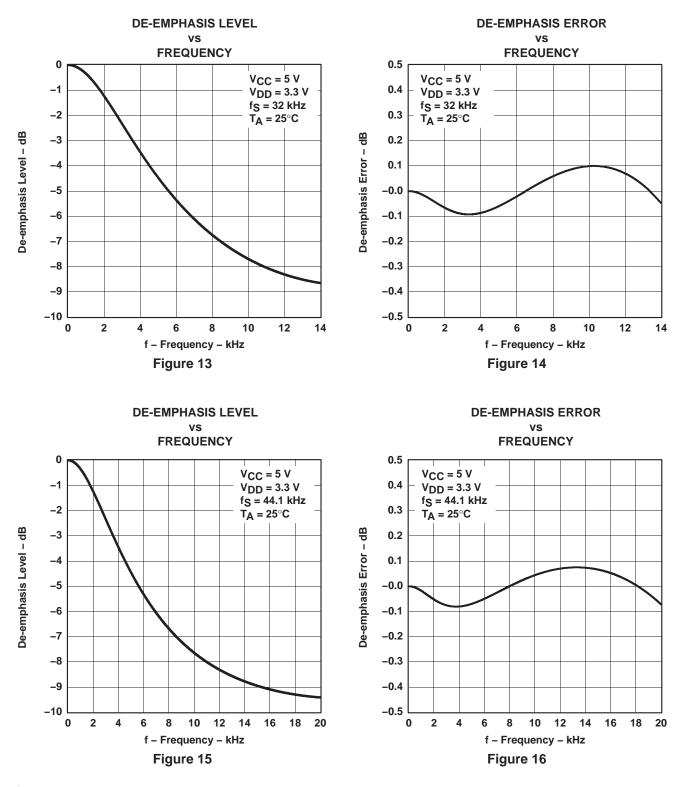
SLES021 - NOVEMBER 2001




Figure 10. Single-Supply PCB Layout

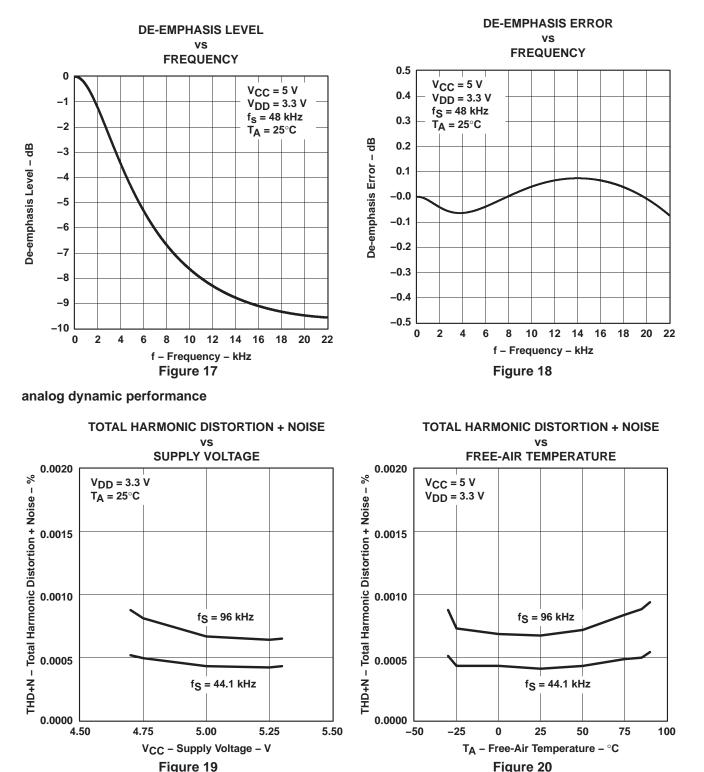
TYPICAL CHARACTERISTICS

digital filter


de-emphasis off

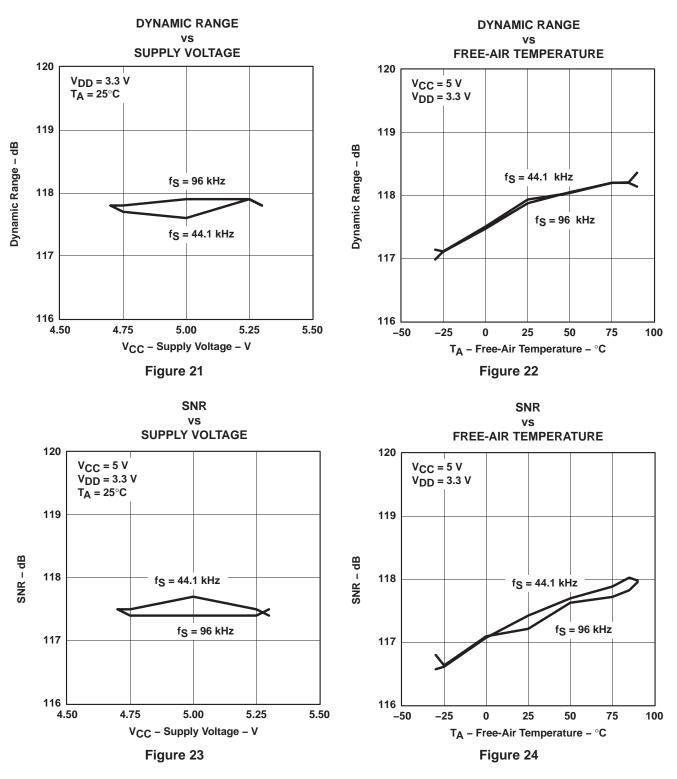
TYPICAL CHARACTERISTICS

de-emphasis error



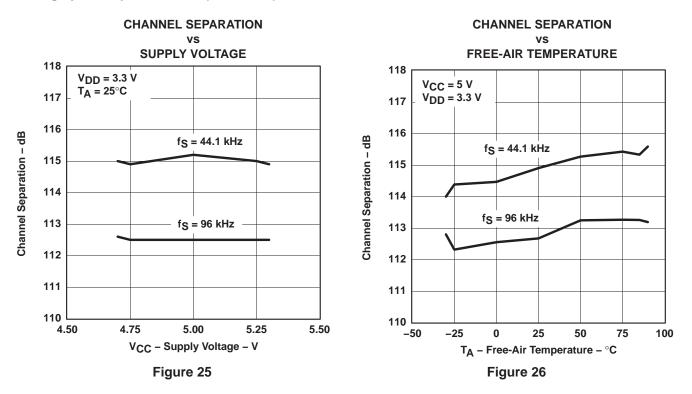
SLES021 - NOVEMBER 2001

TYPICAL CHARACTERISTICS

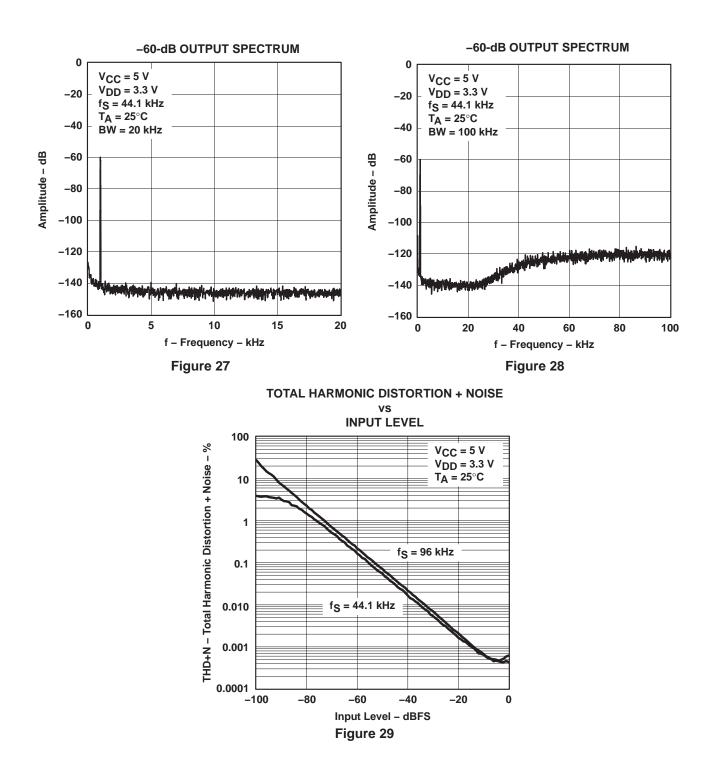

de-emphasis error (continued)

TYPICAL CHARACTERISTICS

analog dynamic performance (continued)



SLES021 - NOVEMBER 2001


TYPICAL CHARACTERISTICS

analog dynamic performance (continued)

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
PCM1730E	NRND	SSOP	DB	28	47	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
PCM1730EG4	NRND	SSOP	DB	28	47	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connctivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	- 0 - 4

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated