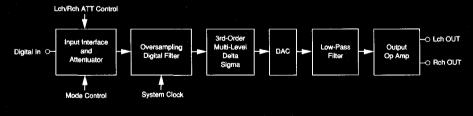
8.2

Dual Voltage Output CMOS Delta-Sigma 16-Bit DIGITAL-TO-ANALOG CONVERTER With On-Chip Digital Filter

FEATURES

- DUAL MULTI-LEVEL NOISE SHAPING DAC WITH ON-CHIP DIGITAL FILTER
- HIGH PERFORMANCE: THD+N: 0.0045% (-87dB) typ Dynamic Range: 91dB typ S/N RATIO: 106dB typ
- ANALOG VOLTAGE OUTPUT: V_o = 3.10Vp-p ● ON-CHIP ANALOG LOW PASS FILTER
- JITTER TOUGH AND LOW RADIO-FREQUENCY INTERFERENCE ENERGY ARCHITECTURE
- SYSTEM CLOCK 384fs
- ON-CHIP 8X OVERSAMPLING DIGITAL FILTER WITH MULTI FUNCTIONS: Double Speed Dubbing Mode Soft Mute and Attenuator Digital De-Emphasis
- SINGLE +5V POWER SUPPLY **OPERATION**
- SMALL 28-PIN SOIC PACKAGE


DESCRIPTION

The PCM1712 is a low cost, dual voltage output CMOS digital-to-analog converter. Incorporated into the PCM1712 is a unique multi-level 3rd-order Delta-Sigma architecture that eliminates influence from input clock jitter and RF interference resulting in truly superior performance.

The PCM1712 will accept 16-bit input data as well as normal/IIS (32BCK/fs, continuous 16-bit data) format

The on-chip digital filter of the PCM1712 has -35dB stop band attenuation and ±0.17dB ripple in the pass

The PCM1712 can be used in a wide variety of consumer audio applications. Its low cost, small size, and single +5V operation make it ideal for portable, automotive, CD players, BS tuners, music instruments, games, and other digital audio applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd. • Tucson, AZ 85706

Tel: (602) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (602) 889-1510 • Immediate Product Info: (800) 548-6132

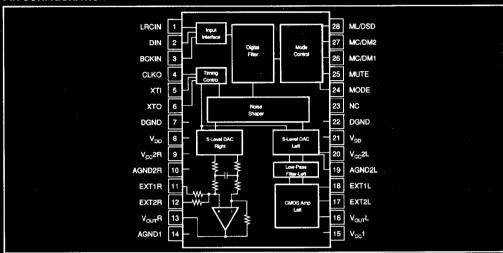
SPECIFICATIONS

ELECTRICAL

All specifications at +25°C, + V_{cc} = + V_{cc} = +5V, fs = 44.1kHz, and 16-bit data, SYSCLK = 384fs, unless otherwise noted.

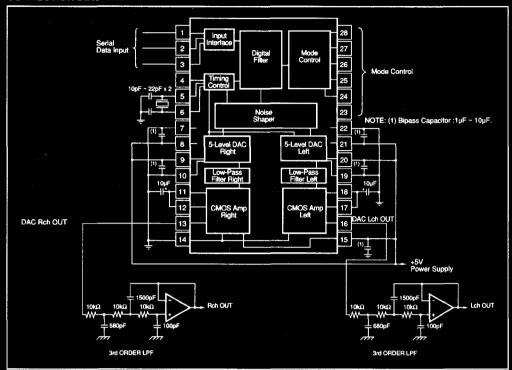
	1000				
PARAMETER	TER CONDITIONS		TYP	MAX	UNITS
RESOLUTION			16		Bits
DIGITAL INPUT/OUTPUT Logic Family Input Logic Level (except XTI) V _H		2.0			VDC
V _k Input Logic Current (except XTI)	en de la companya de La companya de la co	2.0	, án.	0.8	VDC
Input Logic Level (XTI)				200	μА
V _H V _L Input Logic Current (XTI)		3.2		1.4	VDC VDC
I Output Logic Level (CLKO):			1.	±50	μА
V _{OH} V _{oL} Output Logic Current	en de la companya de	4.5		0.2	VDC
Data Format Data Bit		16-Bit/MSE	 (see Timing) SE 3 First, Two's Co	omplements	mA
Sampling Frequency System Clock Frequency	384fs	32 12.288	44.1 16.934	48 18.432	kHz MHz
DC ACURACY Gain Error Gain Mis-Match Channel-To-Channel Bipolar Zero Error Gain Drift Bipolar Gain Drift	V _o = 1/2V _{oc} at Bipolar Zero		±5.0 ±5.0 ±20 ±50 ±20		% of FSR % of FSR mV ppm of FSR/°C ppm of FSR/°C
DYNAMIC PERFORMANCE ⁽¹⁾ THD+N at F/S (0dB) THD+N at -60fdB Dynamic Range S/N Ratio Channel Separation	(_N ≈ 991Hz (_N = 991kHz EIAJ A-weighted EIAJ A-weighted (_N ≈ 991Hz		-87 -31 91 106 90		d8 d8 dB d8 d8
DIGITAL FILTER PERFORMANCE Pass Band Ripple ⁽¹⁾ Pass Band Ripple ⁽²⁾ Stop Band Attenuation ⁽³⁾ Stop Band Attenuation ⁽⁴⁾ Pass Band ⁽⁶⁾ Pass Band ⁽⁶⁾ Stop Band ⁽⁷⁾ Stop Band ⁽⁷⁾ De-emphasis Error	Normal Mode Double Speed Mode (fs 32kHz ~ 48kHz)	-0.2	±0.17 ±0.23 —36 —35 0.4535 0.4535 0.5465	+0.55	dB dB dB fs fs fs fs
ANALOG OUTPUT Voltage Range Load Impedance Center Voltage	F/S(odB)OUT	5K	3.10 +1/2V _{cc}		Vp-p Ω V
POWER SUPPLY REQUIREMENTS Voltage Range: +V _{cc} +V _{cc} +V _{cc} Supply Current +I _{cc} +I _{cc} Power Dissipation	$+V_{cc} = +V_{pp} = +5.0V$ $+V_{cc} = +V_{pp} = +5.0V$	+4.5 +4.5	+5.0 +5.0 45 225	+5.5 +5.5	VDC VDC mA mW
TEMPERATURE RANGE Operation Storage		-25 55		+85 +100	င့

NOTE: (1) Meter 400Hz HPF, 30kHz LPF On, Average Mode. (2)??


The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN	NAME	FUNCTION
1	LRCIN	Sample Rate Clock Input (fs)
2	DIN	Data Input
3	BCKIN	Bit Clock Input
4	CLKO	Buffered Output of Oscillator
5	XTI	Oscillator Input (External Clock Input)
6	XTO	Oscillator Output
7	DGND	Digital Ground
8	V _{DD}	Digital Power Supply (+5V)
9	V _{cc} 2̃R	Analog (DAC) +V _{cc} , Rch
10	AGND2R	Analog (DAC) Ground, Rch
11	EXTIR	Output Amp Common, Rch
12	EXT2R	Output Amp Bias, Rch
13	V _{or} R	Rch Analog Output
14	AGND	Analog Ground

PIN	NAME	FUNCTION
15	, V _{cc}	Analog Power Supply (+5V)
16	Vout	Lch Analog Output
17	EXT2L	Output Amp Bias, Lch
18	EXT1L	Output Amp Common, Lch
19	AGND2L	Analog (DAC) Ground, Lch
20 ^	V _{cc} 2L	Analog (DAC) +V _{cc} , Lch
21	V _{no}	Digital Power Supply, (+5V)
22	DGND	Digital Ground
23	NC	No Connection
24	MODE	Operation Mode Select, (H: Serial, L: Parallel)
25	MUTE	Mute Control (H:OFF, L:ON)
26	MD/DM1	Mode Control, Data/De-emphasis selection
27	MC/DM2	Mode Control, BCK/De-emphasis selection
28	ML/DSD	Mode Control, WDCK/Double speed selection


PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	±6.5VDC
+V _{cc} to V _{op} Voltage	
Input Logic Voltage	
Power Dissipation	
Operating Temperature Range	25°C to +85°C
Storage Temperature Range	55°C to +125°C
Lead Temperature (soldering, 5s)	+260°C

CONNECTION DIAGRAM

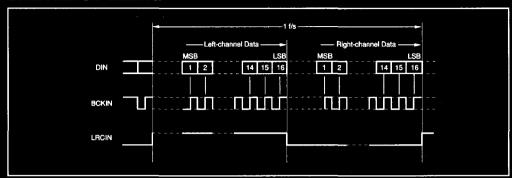


FIGURE 1. Normal Format, 16-Bit (LRCIN H: Lch).

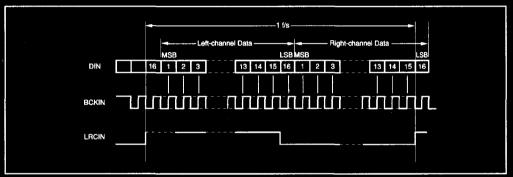


FIGURE 2 . IIS Format, 16-Bit (32 BCKIN/fs, continuous data).

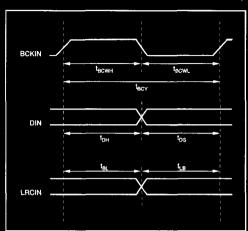


FIGURE 3. Data Input Timing.

BCK Pulsewidth (H Level) BCK Pulsewidth (L Level) BCK Pulse Cycle Time DIN Setup Time DIN Hold Time BCK Rising Edge → LRCI Edge	tacwh tacwi tacy tos toh tai	70ns (min) 70ns (min) 140ns (min) 30ns (min) 30ns (min) 30ns (min)
LRC I Edge → BCK Rising Edge	t _{le}	30ns (min)

TABLE I. Data Input Timing Specifications.

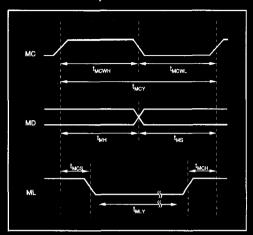
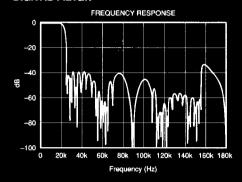
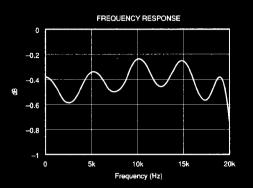
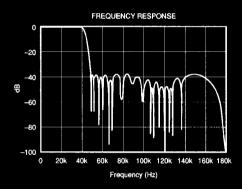


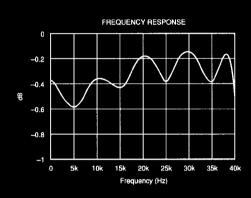
FIGURE 4. Serial Mode Control Timing.

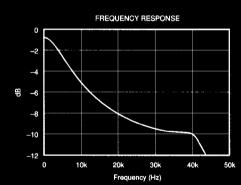
MC Pulsewidth (H Level)	t _{мсмн}	50ns (min)
MC Pulsewidth (L Level)	t _{MCWL}	50ns (min)
MC Pulse Cycle Time	1 _{MCY}	100ns (min)
MD Setup Time	t _{ws}	30ns (min)
MD Hold Time	t _{MH}	30ns (min)
ML Setup Time	t _{MCS}	30ns (min)
ML Hold Time	t _{MCH}	30ns (min)
ML Low-Level Time	they	1/sysclk + 20ns (min)

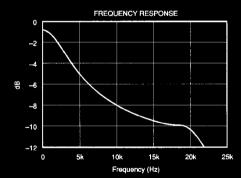

TABLE II. Serial Mode Control Timing Specifications.

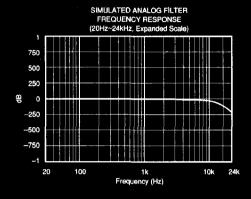

Or, Call Customer Service at 1-800-548-6132 (USA Only)

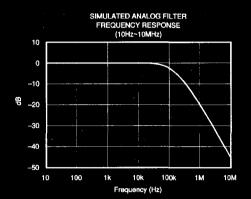

TYPICAL PERFORMANCE CURVES


All specifications at +25°C, + V_{CC} = + V_{DO} = +5V, fs = 44.1kHz, f_{SYS} = 384/256fs, and 16-bit data, unless otherwise noted.


DIGITAL FILTER







TYPICAL PERFORMANCE CURVES (CONT)

All specifications at +25°C, +V_{CC} = +V_{DD} = +5V, is = 44.1kHz, f_{sys} = 384/256fs, and 16-bit data, unless otherwise noted.

ANALOG FILTER

MODE CONTROL: SERIAL/PARALLEL SELECTION

MODE = H	Serial Mode
MODE = L	Parallel Mode

TABLE III. Serial and Parallel Mode are Selectable by MODE Pin (Pin 24).

MODE CONTROL: SELECTABLE FUNCTIONS

FUNCTION	SERIAL MODE (MODE = H)	PARALLEL MODE (MODE = L)				
Input Data Format Selection	0	X(Normal Mode Fixed)				
Input Data Bit Selection	X(16-bit Fixed)	X(16-bit Fixed)				
Input LRCI Polarity Selection	0	X				
De-emphasis Control	0	0				
Mute	Q	a				
Attenuation	0	X				
Double Speed Dubbing	0	0				
NOTE: 0: Selectable, X: Not Selectable.						

TABLE IV. Selectable Functions in Serial Mode and Parallel Mode.

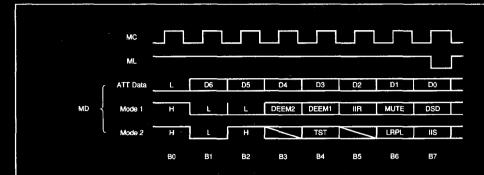
PARALLEL-MODE: DE-EMPHASIS CONTROL (MODE: L, PIN 24)

DM1 (Pin 26)	DM2 (Pin 27)	De-emphasis
L	L	OFF
н	L	32kHz
L	H	48kHz
н	Н	44.1kHz

TABLE V. De-emphasis (Pins 26 and 27).

PARALLEL-MODE: DOUBLE SPEED DUBBING CONTROL (MODE: L, PIN 28)

DSD = H	Normal Mode		
DSD = L	Double Speed Dubbing Mode		


TABLE VI. DSD (Pin 28).

SERIAL-MODE CONTROL INPUT FORMAT (MODE: H, PIN 24)

					MODE	FUNCTION MODE SELECTION			MODE BY
	BO	B1	B2	BITS	FLAG	MODE	LH	SELECTED FUNCTION	RESET
				3 4	DEEM2 DEEM1	Sampling Frequency		DEEM2 0 1	
						for De-emphasis		DEEM1 0 48kHz 1 32kHz 44.1kHz	44.1kHz
Mode	Н	L	L	5	IIR	De-emphasis	L	De-emphasis OFF	0
1							Н	De-emphasis ON	
		i		6	MUTE	Mute	L	Mute OFF	0
							Н	Mute ON	
				7	DSD	Double Speed	L	Double-speed OFF	0
							Н	Double-speed ON	
				3		Not Assigned			
				4	TST	Test Mode	н	Normal "H"	н
Mode 2	н	L	н	5		Not Assigned			
				6	LRPL	Polarity for LRCI	L	Lch:high/Rch:low	0
							H	Lch:low/Rch:high	
				- 7	IIS	Input Format	L H	Normal IIS	0

TABLE VII. Mode Controls in Serial Mode.

8.2

NOTE: (1) Cycle Time for Mode Control: Cycle time for mode control must be set over 192 times of minimum system clock. (2) Attenuator Operation: ATT data D6 and D0 are MSB and LSB, respectively. Attenuation level can be controlled using the following equation; Attenuation Level = 20 x LOG₁₀ (1-ATT DATA/127) (dB). Only, in the case of ATT DATA = 127, attenuation level becomes minus infinity. (3) Soft Mute Operation: Attenuation level gradually decreased to minus infinity from current level by multing turned-on and increased to previous level by muting turned-off. The signal is completely muted after 127/fs seconds. Mute pin must be set "H" or open for serial interface case. (4) Infinity-Zero Detection: The PCM1712 has infinity-zero detect function. Internal detector is counting number of bit clock with infinity-zero data, if continue 8192 bit clock with infinity-zero data, output of DAC will be set Bipolar Zero (1/2 V_{cc}).

FIGURE 5. Mode Control Input Format, Serial Mode.

OPERATION INSTRUCTION FOR SYSTEM CLOCK

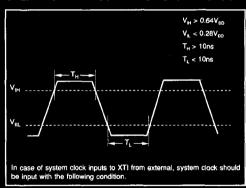


FIGURE 6. Mode Control Input Format, Serial Mode.

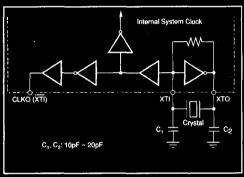


FIGURE 7. External Crystal Oscillator.

SYSTEM CLOCK

IN NORMAL/DOUBLE SPEED MODE

The system clock frequency must be fixed at 16.9344MHz in both Normal and Double Speed Dubbing Mode. When the sampling frequency entered to LRCIN is named as "fs", the selection of system clock is shown as the below table.

	DSD			
PARAMETER	H (Normal)	L (Double Speed)		
XTI Input Clock Frequency	384fs	192fs		
XTI Frequency	16.9344MHz (fs = 44.1kHz)	16.9344MHz (fs = 88.2kHz)		
CLKO Output Clock Frequency	384fs	192fs		

TABLE VIII.

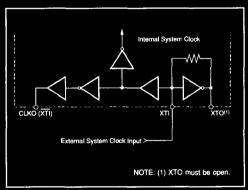


FIGURE 8. External System Clock.