INTEGRATED CIRCUITS

DATA SHEET

PCF8579 LCD column driver for dot matrix graphic displays

Product specification Supersedes data of February 1995 File under Integrated Circuits, IC12

LCD column driver for dot matrix graphic displays

PCF8579

FEATURES

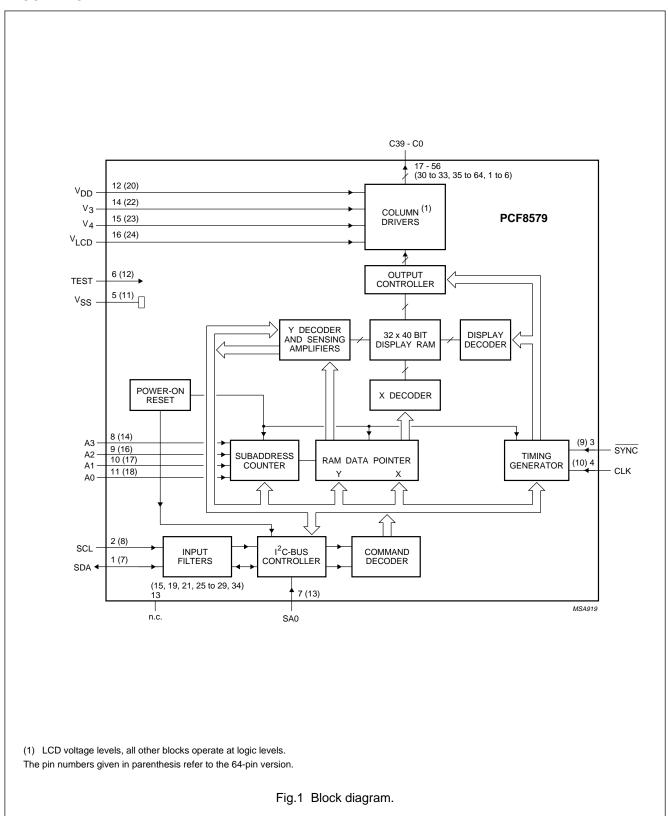
- · LCD column driver
- Used in conjunction with the PCF8578, this device forms part of a chip set capable of driving up to 40960 dots
- 40 column outputs
- Selectable multiplex rates; 1:8, 1:16, 1:24 or 1:32
- Externally selectable bias configuration, 5 or 6 levels
- Easily cascadable for large applications (up to 32 devices)
- 1280-bit RAM for display data storage
- · Display memory bank switching
- Auto-incremented data loading across hardware subaddress boundaries (with PCF8578)
- · Power-on reset blanks display
- Logic voltage supply range 2.5 to 6 V
- Maximum LCD supply voltage 9 V
- · Low power consumption
- I²C-bus interface
- TTL/CMOS compatible
- · Compatible with most microcontrollers
- Optimized pinning for single plane wiring in multiple device applications (with PCF8578)
- Space saving 56-lead plastic mini-pack and 64-pin plastic low profile quad flat package
- Compatible with chip-on-glass technology.

APPLICATIONS

- · Automotive information systems
- · Telecommunication systems
- · Point-of-sale terminals
- · Computer terminals
- · Instrumentation.

GENERAL DESCRIPTION

The PCF8579 is a low power CMOS LCD column driver, designed to drive dot matrix graphic displays at multiplex rates of 1:8, 1:16, 1:24 or 1:32. The device has 40 outputs and can drive 32×40 dots in a 32 row multiplexed LCD. Up to 16 PCF8579s can be cascaded and up to 32 devices may be used on the same I²C-bus (using the two slave addresses). The device is optimized for use with the PCF8578 LCD row/column driver. Together these two devices form a general purpose LCD dot matrix driver chip set, capable of driving displays of up to 40960 dots. The PCF8579 is compatible with most microcontrollers and communicates via a two-line bidirectional bus (I²C-bus). Communication overheads are minimized by a display RAM with auto-incremented addressing and display bank switching.


ORDERING INFORMATION

TYPE	PACKAGE					
NUMBER	NAME	DESCRIPTION	VERSION			
PCF8579T	VSO56	plastic very small outline package; 56 leads	SOT190			
PCF8579U7	_	chip with bumps on tape	_			
PCF8579H	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2			

LCD column driver for dot matrix graphic displays

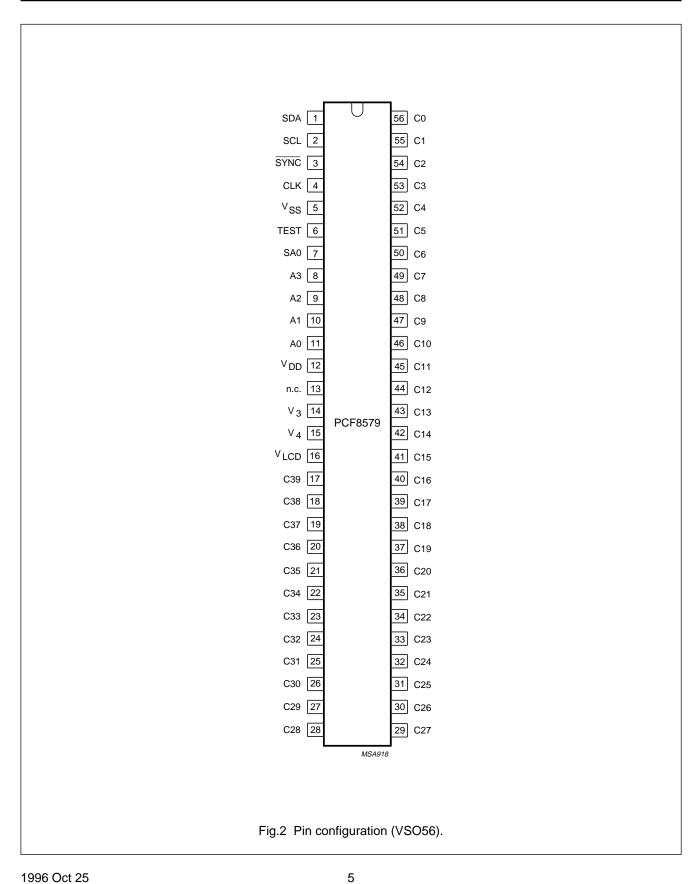
PCF8579

BLOCK DIAGRAM

LCD column driver for dot matrix graphic displays

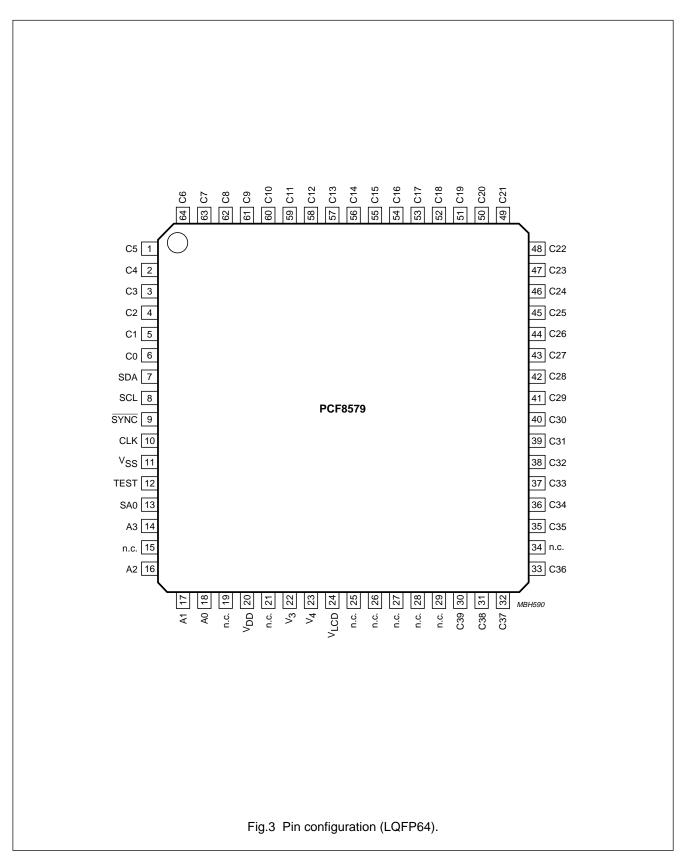
PCF8579

PINNING


CYMPOL		PINS	DESCRIPTION	
SYMBOL	VSO56	LQFP64		
SDA	1	7	I ² C-bus serial data input/output	
SCL	2	8	I ² C-bus serial clock input	
SYNC	3	9	cascade synchronization input	
CLK	4	10	external clock input	
V _{SS}	5	11	ground (logic)	
TEST	6	12	test pin (connect to V _{SS})	
SA0	7	13	I ² C-bus slave address input (bit 0)	
A3 to A0	8 to 11	14, 16 to 18	I ² C-bus subaddress inputs	
V _{DD}	12	20	supply voltage	
n.c.	13 ⁽¹⁾	15, 19, 21,25 to 29, 34	not connected	
V ₃ , V ₄	14 and 15	22 and 23	LCD bias voltage inputs	
V _{LCD}	16	24	LCD supply voltage	
C39 to C0	17 to 56	30 to 33, 35 to 64 and 1 to 6	LCD column driver outputs	

Note

1. Do not connect, this pin is reserved.


LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

FUNCTIONAL DESCRIPTION

The PCF8579 column driver is designed for use with the PCF8578. Together they form a general purpose LCD dot matrix chip set.

Typically up to 16 PCF8579s may be used with one PCF8578. Each of the PCF8579s is identified by a unique 4-bit hardware subaddress, set by pins A0 to A3. The PCF8578 can operate with up to 32 PCF8579s when using two I²C-bus slave addresses. The two slave addresses are set by the logic level on input SA0.

Multiplexed LCD bias generation

The bias levels required to produce maximum contrast depend on the multiplex rate and the LCD threshold voltage (V_{th}). V_{th} is typically defined as the RMS voltage at which the LCD exhibits 10% contrast. Table 1 shows the optimum voltage bias levels for the PCF8578/PCF8579 chip set as functions of V_{op} (V_{op} = V_{DD} – V_{LCD}), together with the discrimination ratios (D) for the different multiplex rates. A practical value for V_{op} is obtained by equating V_{off(rms)} with V_{th}.

Table 1 Optimum LCD bias voltages

PARAMETER	MULTIPLEX RATE								
PARAMETER	1:8	1:16	1 : 24	1:32					
$\frac{V_2}{V_{op}}$	0.739	0.800	0.830	0.850					
$\frac{V_3}{V_{op}}$	0.522	0.600	0.661	0.700					
$\frac{V_4}{V_{op}}$	0.478	0.400	0.339	0.300					
$\frac{V_5}{V_{op}}$	0.261	0.200	0.170	0.150					
$\frac{V_{off(rms)}}{V_{op}}$	0.297	0.245	0.214	0.193					
$\frac{V_{on(rms)}}{V_{op}}$	0.430	0.316	0.263	0.230					
$D = \frac{V_{on(rms)}}{V_{off(rms)}}$	1.447	1.291	1.230	1.196					
$\frac{V_{op}}{V_{th}}$	3.370	4.080	4.680	5.190					

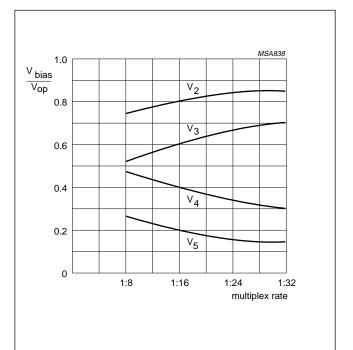
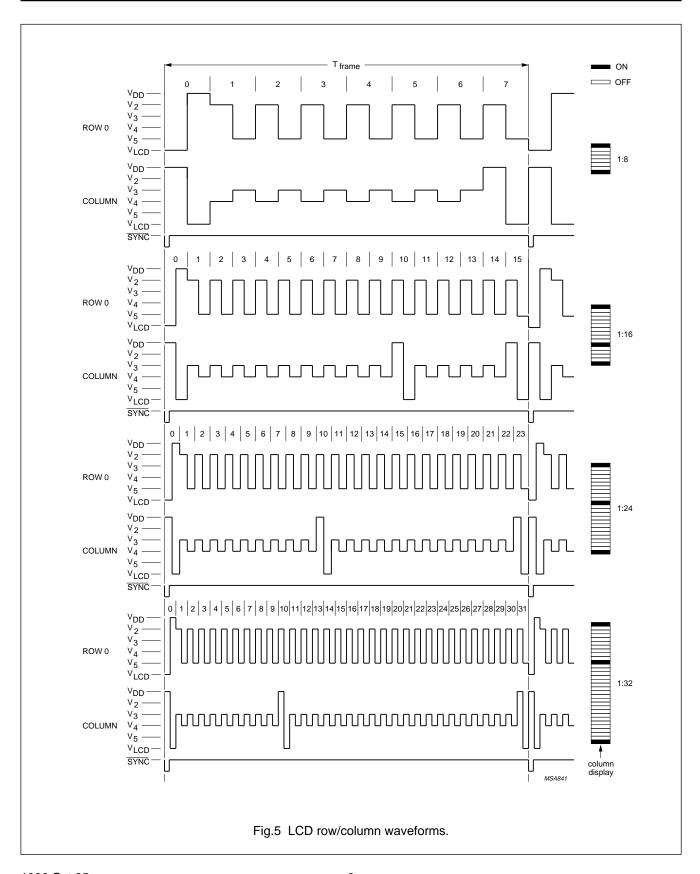


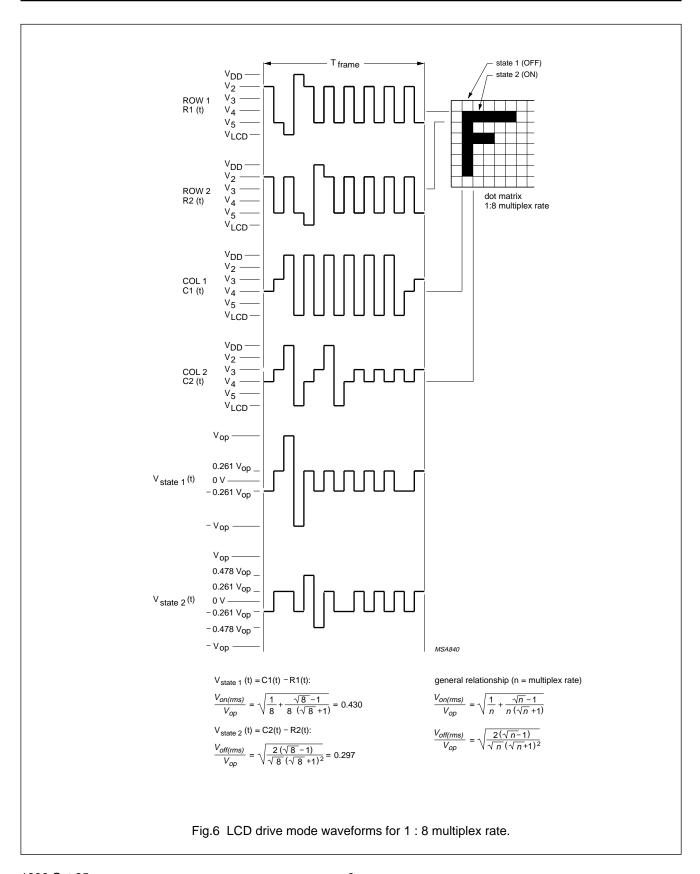
Fig.4 LCD bias voltages as a function of the multiplex rate.

Power-on reset

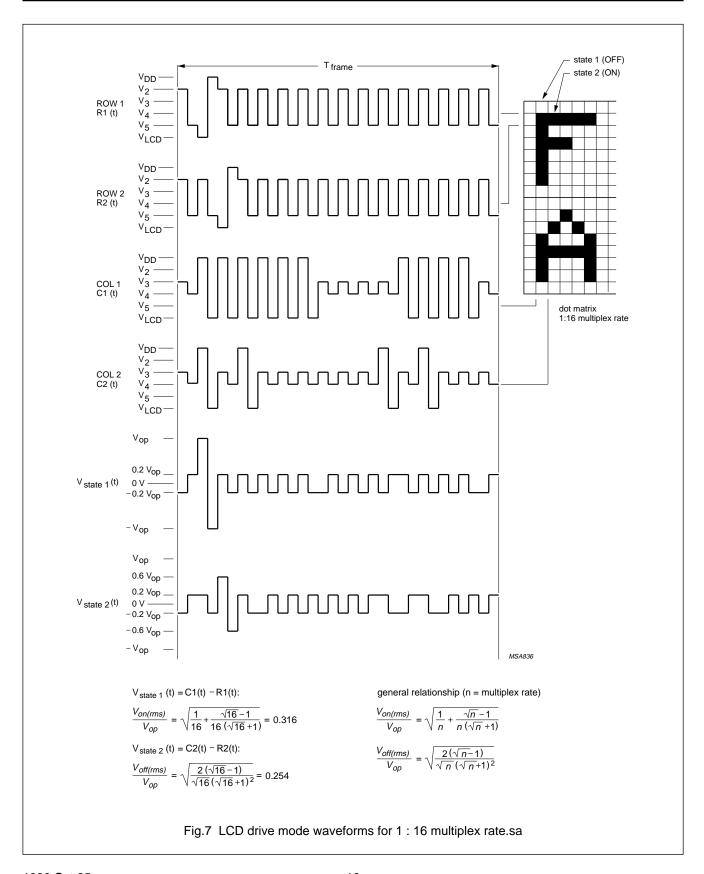

At power-on the PCF8579 resets to a defined starting condition as follows:

- 1. Display blank (in conjunction with PCF8578)
- 2. 1:32 multiplex rate
- 3. Start bank, 0 selected
- 4. Data pointer is set to X, Y address 0, 0
- 5. Character mode
- 6. Subaddress counter is set to 0
- 7. I²C-bus is initialized.

Data transfers on the I²C-bus should be avoided for 1 ms following power-on, to allow completion of the reset action.


LCD column driver for dot matrix graphic displays

PCF8579


LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

Timing generator

The timing generator of the PCF8579 organizes the internal data flow from the RAM to the display drivers. An external synchronization pulse SYNC is received from the PCF8578. This signal maintains the correct timing relationship between cascaded devices.

Column drivers

Outputs C0 to C39 are column drivers which must be connected to the LCD. Unused outputs should be left open-circuit.

Display RAM

The PCF8579 contains a 32×40 -bit static RAM which stores the display data. The RAM is divided into 4 banks of 40 bytes ($4 \times 8 \times 40$ bits). During RAM access, data is transferred to/from the RAM via the I²C-bus.

Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows an individual data byte or a series of data bytes to be written into, or read from, the display RAM, controlled by commands sent on the I²C-bus.

Subaddress counter

The storage and retrieval of display data is dependent on the content of the subaddress counter. Storage and retrieval take place only when the contents of the subaddress counter agree with the hardware subaddress at pins A0, A1, A2 and A3.

I²C-bus controller

The I²C-bus controller detects the I²C-bus protocol, slave address, commands and display data bytes. It performs the conversion of the data input (serial-to-parallel) and the data output (parallel-to-serial). The PCF8579 acts as an I²C-bus slave transmitter/receiver. Device selection depends on the I²C-bus slave address, the hardware subaddress and the commands transmitted.

Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

RAM access

There are three RAM ACCESS modes:

- Character
- · Half-graphic
- Full-graphic.

These modes are specified by bits G1 and G0 of the RAM ACCESS command. The RAM ACCESS command controls the order in which data is written to or read from the RAM (see Fig.8).

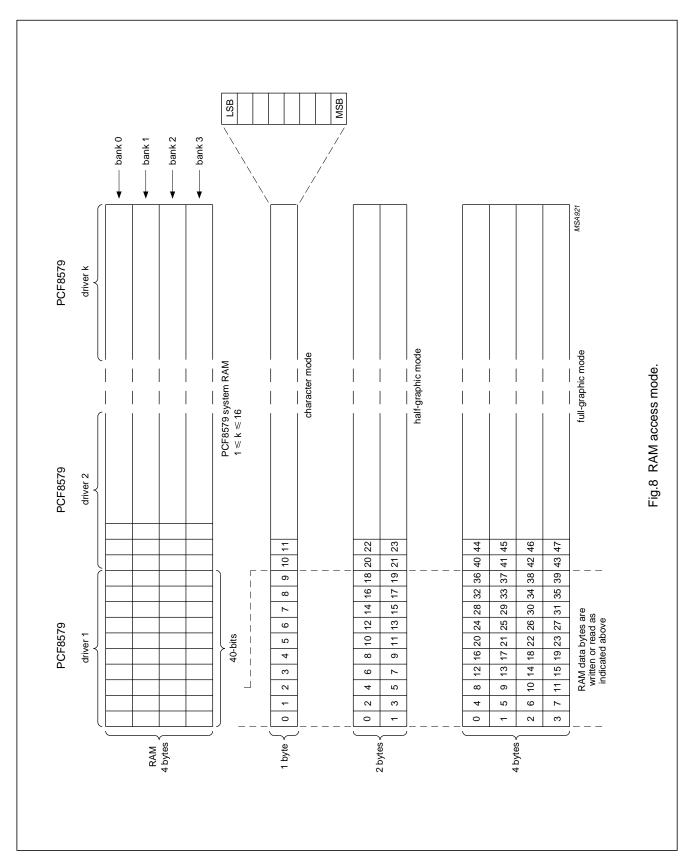
To store RAM data, the user specifies the location into which the first byte will be loaded (see Fig.9):

- Device subaddress (specified by the DEVICE SELECT command)
- RAM X-address (specified by the LOAD X-ADDRESS command)
- RAM bank (specified by bits Y1 and Y0 of the RAM ACCESS command).

Subsequent data bytes will be written or read according to the chosen RAM access mode. Device subaddresses are automatically incremented between devices until the last device is reached. If the last device has subaddress 15, further display data transfers will lead to a wrap-around of the subaddress to 0.

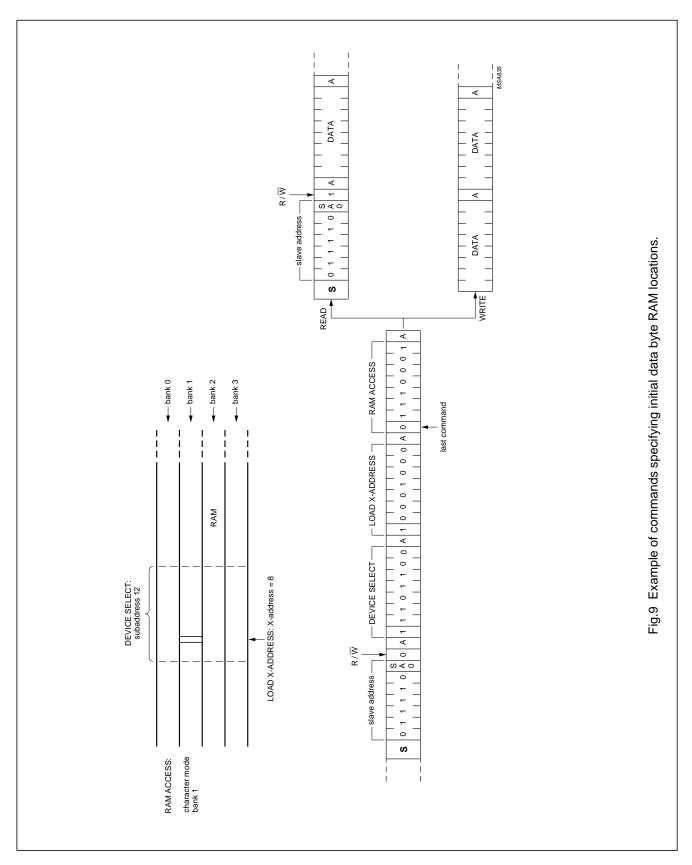
Display control

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs. The number of rows scanned depends on the multiplex rate set by bits M1 and M0 of the SET MODE command.

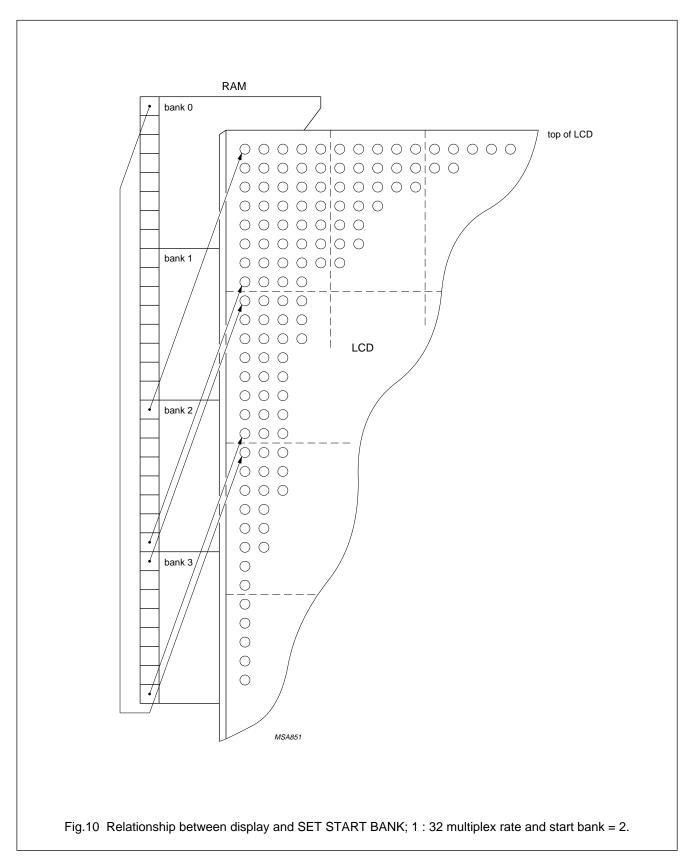

The display status (all dots on/off and normal/inverse video) is set by bits E1 and E0 of the SET MODE command. For bank switching, the RAM bank corresponding to the top of the display is set by bits B1 and B0 of the SET START BANK command. This is shown in Fig.10 This feature is useful when scrolling in alphanumeric applications.

TEST pin

The TEST pin must be connected to V_{SS}.


LCD column driver for dot matrix graphic displays

PCF8579


LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

I²C-BUS PROTOCOL

Two 7-bit slave addresses (0111100 and 0111101) are reserved for both the PCF8578 and PCF8579. The least significant bit of the slave address is set by connecting input SA0 to either logic 0 (V_{SS}) or logic 1 (V_{DD}). Therefore, two types of PCF8578 or PCF8579 can be distinguished on the same I²C-bus which allows:

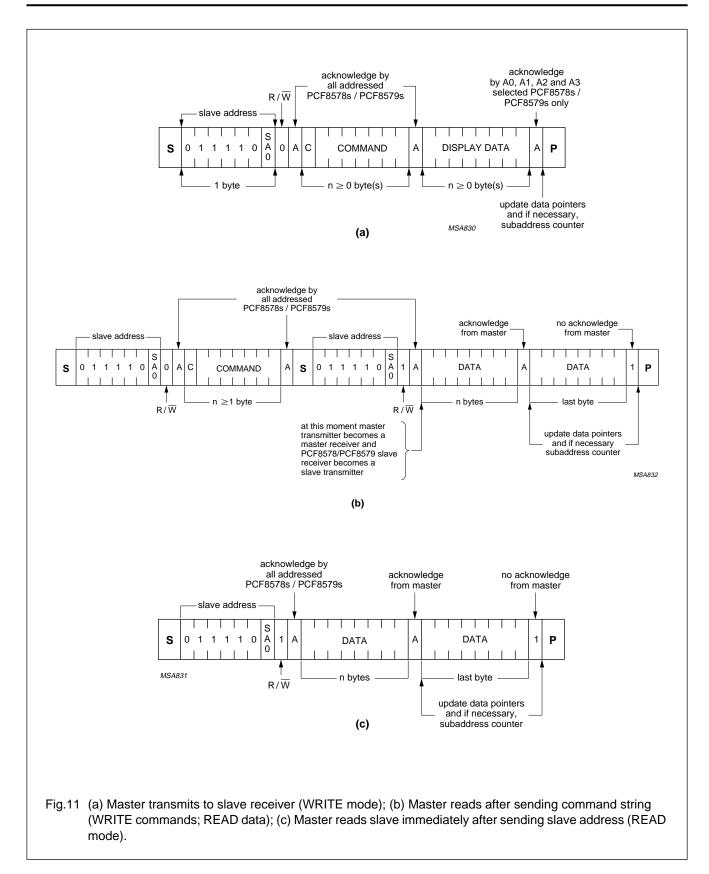
- 1. One PCF8578 to operate with up to 32 PCF8579s on the same I²C-bus for very large applications.
- The use of two types of LCD multiplex schemes on the same I²C-bus.

In most applications the PCF8578 will have the same slave address as the PCF8579.

The I²C-bus protocol is shown in Fig.11.

All communications are initiated with a start condition (S) from the I²C-bus master, which is followed by the desired slave address and read/write bit. All devices with this slave address acknowledge in parallel. All other devices ignore the bus transfer.

In WRITE mode (indicated by setting the read/write bit LOW) one or more commands follow the slave address acknowledgement. The commands are also acknowledged by all addressed devices on the bus. The last command must clear the continuation bit C. After the last command a series of data bytes may follow. The acknowledgement after each byte is made only by the (A0, A1, A2 and A3) addressed PCF8579 or PCF8578 with its implicit subaddress 0. After the last data byte has been acknowledged, the I²C-bus master issues a stop condition (P).


In READ mode, indicated by setting the read/write bit HIGH, data bytes may be read from the RAM following the slave address acknowledgement. After this acknowledgement the master transmitter becomes a master receiver and the PCF8579 becomes a slave transmitter. The master receiver must acknowledge the reception of each byte in turn. The master receiver must signal an end of data to the slave transmitter, by **not** generating an acknowledge on the last byte clocked out of the slave. The slave transmitter then leaves the data line HIGH, enabling the master to generate a stop condition (P).

Display bytes are written into, or read from, the RAM at the address specified by the data pointer and subaddress counter. Both the data pointer and subaddress counter are automatically incremented, enabling a stream of data to be transferred either to, or from, the intended devices.

In multiple device applications, the hardware subaddress pins of the PCF8579s (A0 to A3) are connected to V_{SS} or V_{DD} to represent the desired hardware subaddress code. If two or more devices share the same slave address, then each device **must** be allocated a unique hardware subaddress.

LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

Command decoder

The command decoder identifies command bytes that arrive on the I^2C -bus. The most significant bit of a command is the continuation bit C (see Fig.12). When this bit is set, it indicates that the next byte to be transferred will also be a command. If the bit is reset, it indicates the conclusion of the command transfer. Further bytes will be regarded as display data. Commands are transferred in WRITE mode only.

The five commands available to the PCF8579 are defined in Tables 2 and 3.

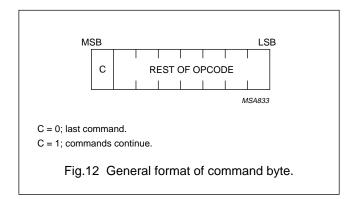


Table 2 Summary of commands

COMMAND	OPCODE ⁽¹⁾			DESCRIPTION					
SET MODE	С	1	0	D	D	D	D	D	multiplex rate, display status, system type
SET START BANK	С	1	1	1	1	1	D	D	defines bank at top of LCD
DEVICE SELECT	С	1	1	0	D	D	D	D	defines device subaddress
RAM ACCESS	С	1	1	1	D	D	D	D	graphic mode, bank select (D D D D ≥ 12 is not allowed; see SET START BANK opcode)
LOAD X-ADDRESS	С	0	D	D	D	D	D	D	0 to 39

Note

1. C = command continuation bit. D = may be a logic 1 or 0.

LCD column driver for dot matrix graphic displays

PCF8579

Table 3 Definition of PCF8578/PCF8579 commands

COMMAND				OPC	ODE				OPTIONS	DESCRIPTION
SET MODE	С	1	0	Т	E1	E0	M1	M0	see Table 4	defines LCD drive mode
									see Table 5	defines display status
									see Table 6	defines system type
SET START BANK	С	1	1	1	1	1	B1	B0	see Table 7	defines pointer to RAM bank corresponding to the top of the LCD; useful for scrolling, pseudo motion and background preparation of new display
DEVICE SELECT	С	1	1	0	A3	A2	A1	A0	see Table 8	four bits of immediate data, bits A0 to A3, are transferred to the subaddress counter to define one of sixteen hardware subaddresses
RAM ACCESS	С	1	1	1	G1	G0	Y1	Y0	see Table 9	defines the auto-increment behaviour of the address for RAM access
									see Table 10	two bits of immediate data, bits Y0 to Y1, are transferred to the X-address pointer to define one of forty display RAM columns
LOAD X-ADDRESS	С	0	X5	X4	X3	X2	X1	X0	see Table 11	six bits of immediate data, bits X0 to X5, are transferred to the X-address pointer to define one of forty display RAM columns

LCD column driver for dot matrix graphic displays

PCF8579

Table 4 Set mode option 1

I CD	DRIVE MODE	BI	тѕ
LCD	DRIVE MODE	M1	MO
1:8	MUX (8 rows)	0	1
1:16	MUX (16 rows)	1	0
1:24	MUX (24 rows)	1	1
1:32	MUX (32 rows)	0	0

Table 5 Set mode option 2

DISPLAY STATUS	Bľ	TS
DISPLAT STATUS	E1	E0
Blank	0	0
Normal	0	1
All segments on	1	0
Inverse video	1	1

Table 6 Set mode option 3

SYSTEM TYPE	BIT T
PCF8578 row only	0
PCF8578 mixed mode	1

Table 7 Set start bank option 1

START BANK POINTER	BITS			
START BANK POINTER	B1	В0		
Bank 0	0	0		
Bank 1	0	1		
Bank 2	1	0		
Bank 3	1	1		

Table 8 Device select option 1

DESCRIPTION	BITS				
Decimal value of 0 to 15	A3	A2	A1	A0	

Table 9 RAM access option 1

RAM ACCESS MODE	BITS			
RAW ACCESS WODE	G1	G0		
Character	0	0		
Half-graphic	0	1		
Full-graphic	1	0		
Not allowed (note 1)	1	1		

Note

1. See opcode for SET START BANK in Table 3.

Table 10 RAM access option 2

DESCRIPTION	Bľ	TS
Decimal value of 0 to 3	Y1	Y0

Table 11 Load X-address option 1

DESCRIPTION			BI	TS		
Decimal value of 0 to 39	X5	X4	Х3	X2	X1	X0

LCD column driver for dot matrix graphic displays

PCF8579

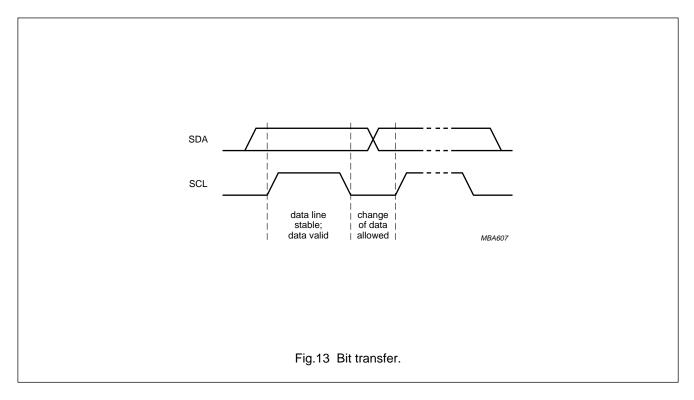
CHARACTERISTICS OF THE I2C-BUS

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL) which must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

Bit transfer

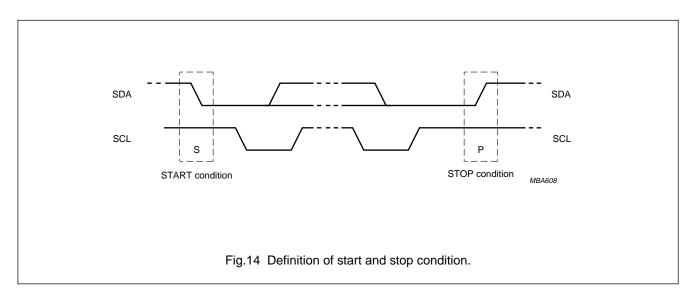
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this moment will be interpreted as control signals.

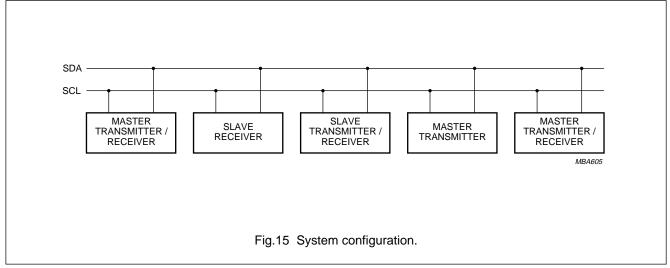
Start and stop conditions

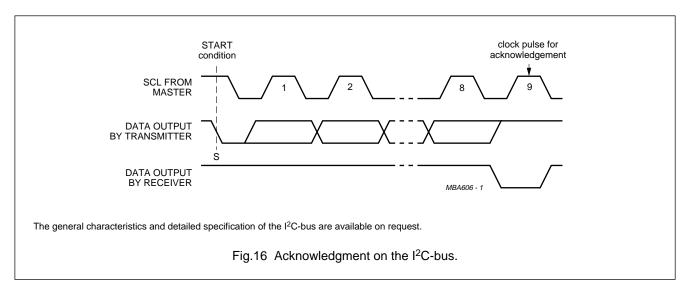

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the stop condition (P).

System configuration

A device transmitting a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message flow is the 'master' and the devices which are controlled by the master are the 'slaves'.


Acknowledge


The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal the end of a data transmission to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.



LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+8.0	V
V _{LCD}	LCD supply voltage	V _{DD} – 11	V_{DD}	V
V _{i1}	input voltage pins SDA, SCL, SYNC, CLK, TEST, SA0, A0, A1, A2 and A3	V _{SS} – 0.5	V _{DD} + 0.5	V
V _{i2}	input voltage pins V ₃ and V ₄	V _{LCD} – 0.5	V _{DD} + 0.5	V
V _{o1}	output voltage pin SDA	V _{SS} - 0.5	V _{DD} + 0.5	V
V _{o2}	output voltage pins C0 to C39	V _{LCD} – 0.5	V _{DD} + 0.5	V
I _I	DC input current	-10	+10	mA
Io	DC output current	-10	+10	mA
I _{DD} , I _{SS} , I _{LCD}	current at pins V _{DD} , V _{SS} or V _{LCD}	-50	+50	mA
P _{tot}	total power dissipation per package	_	400	mW
Po	power dissipation per output	_	100	mW
T _{stg}	storage temperature	-65	+150	°C

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices.

LCD column driver for dot matrix graphic displays

PCF8579

DC CHARACTERISTICS

 V_{DD} = 2.5 to 6 V; V_{SS} = 0 V; V_{LCD} = V_{DD} - 3.5 V to V_{DD} - 9 V; V_{amb} = -40 to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies		•		•		•
V _{DD}	supply voltage		2.5	_	6.0	V
V _{LCD}	LCD supply voltage		V _{DD} – 9	_	V _{DD} - 3.5	V
I _{DD}	supply current	f _{CLK} = 2 kHz; note 1	_	9	20	μΑ
V _{POR}	power-on reset level	note 2	_	1.3	1.8	V
Logic		•	•	•		•
V _{IL}	LOW level input voltage		V _{SS}	_	0.3V _{DD}	V
V _{IH}	HIGH level input voltage		0.7V _{DD}	_	V _{DD}	V
I _{LI1}	leakage current at pins SDA, SCL, SYNC, CLK, TEST, SA0, A0, A1, A2 and A3	$V_i = V_{DD}$ or V_{SS}	-1	_	+1	μΑ
I _{OL}	LOW level output current at pin SDA	V _{OL} = 0.4 V; V _{DD} = 5 V	3	_	_	mA
C _i	input capacitance	note 3	_	_	5	pF
LCD outpu	uts	•				
I _{LI2}	leakage current at pins V ₃ to V ₄	$V_i = V_{DD}$ or V_{LCD}	-2	_	+2	μΑ
V _{DC}	DC component of LCD drivers pins C0 to C39		_	±20	_	mV
R _{COL}	output resistance at pins C0 to C39	note 4	_	3	6	kΩ

Notes

- 1. Outputs are open; inputs at V_{DD} or V_{SS} ; I²C-bus inactive; clock with 50% duty factor.
- 2. Resets all logic when $V_{DD} < V_{POR}$.
- 3. Periodically sampled; not 100% tested.
- 4. Resistance measured between output terminal (C0 to C39) and bias input (V₃, V₄, V_{DD} and V_{LCD}) when the specified current flows through one output under the following conditions (see Table 1):
 - a) $-V_{op} = V_{DD} V_{LCD} = 9 V$;
 - b) $-V_3-V_{LCD} \geq 4.70~V;~V_4-V_{LCD} \leq 4.30~V;~I_{LOAD}$ = 100 $\mu A.$

LCD column driver for dot matrix graphic displays

PCF8579

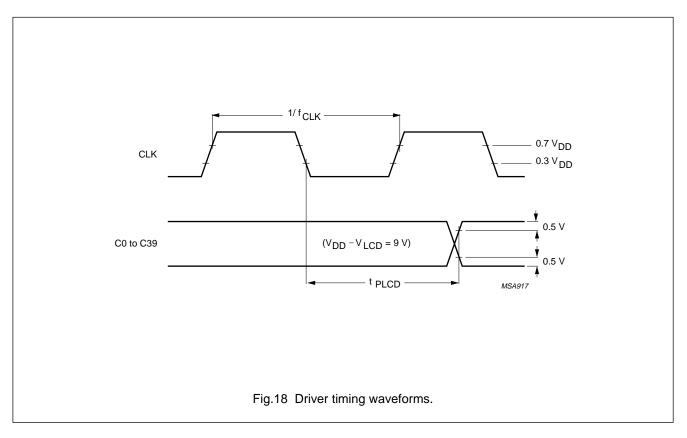
AC CHARACTERISTICS

All timing values are referred to V_{IH} and V_{IL} levels with an input voltage swing of V_{SS} to V_{DD} . $V_{DD} = 2.5$ to 6 V; $V_{SS} = 0$ V; $V_{LCD} = V_{DD} - 3.5$ V to $V_{DD} - 9$ V; $V_{amb} = -40$ to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f _{clk}	clock frequency	50% duty factor	_	note 1	10	kHz
t _{PLCD}	driver delays	$V_{DD} - V_{LCD} = 9 \text{ V}$; with test loads	_	_	100	μs
I ² C-bus						
f _{SCL}	SCL clock frequency		_	_	100	kHz
t _{SW}	tolerable spike width on bus		_	_	100	ns
t _{BUF}	bus free time		4.7	_	_	μs
t _{SU;STA}	start condition set-up time	repeated start codes only	4.7	_	_	μs
t _{HD;STA}	start condition hold time		4.0	_	_	μs
t _{LOW}	SCL LOW time		4.7	_	_	μs
t _{HIGH}	SCL HIGH time		4.0	_	_	μs
t _r	SCL and SDA rise time		_	_	1.0	μs
t _f	SCL and SDA fall time		_	_	0.3	μs
t _{SU;DAT}	data set-up time		250	_	_	ns
t _{HD;DAT}	data hold time		0	_	_	ns
t _{SU;STO}	stop condition set-up time		4.0	_	_	μs

Note

1. Typically 0.9 to 3.3 kHz.


SDA
$$\xrightarrow{1.5 \text{ k}\Omega}$$
 V_{DD} (2%)

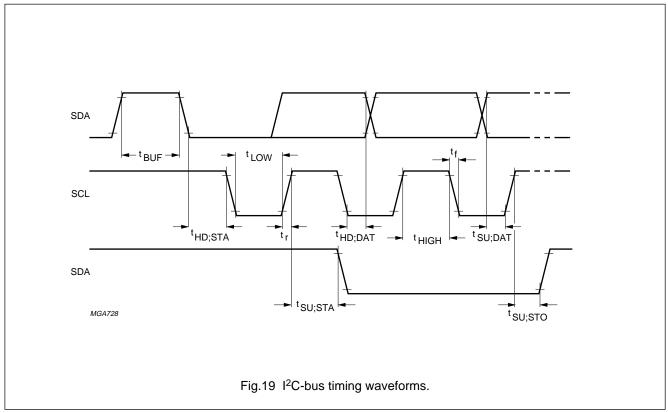
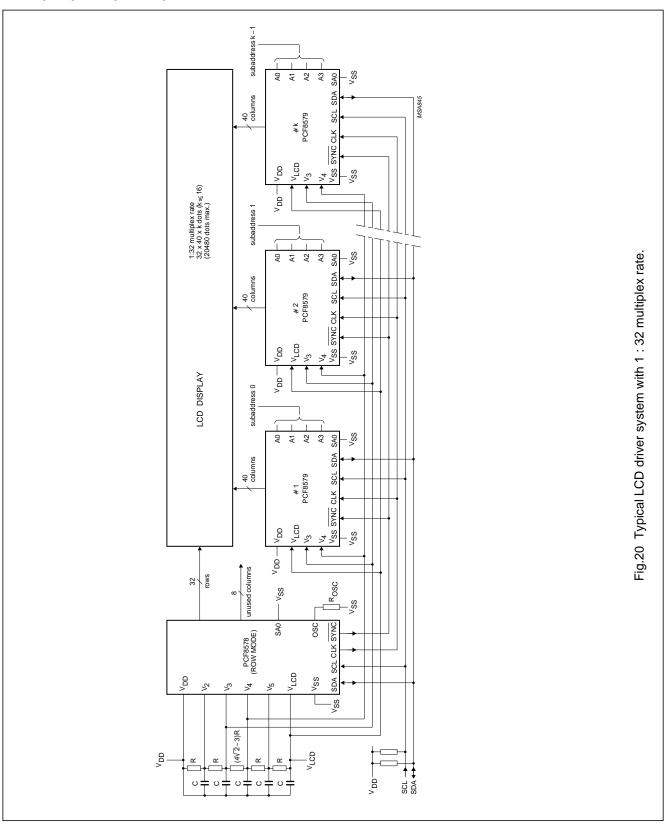

C0 to C39 $\overset{1 \text{ nF}}{-\text{II}}$ $\overset{MSA916}{}$

Fig.17 AC test loads.

LCD column driver for dot matrix graphic displays

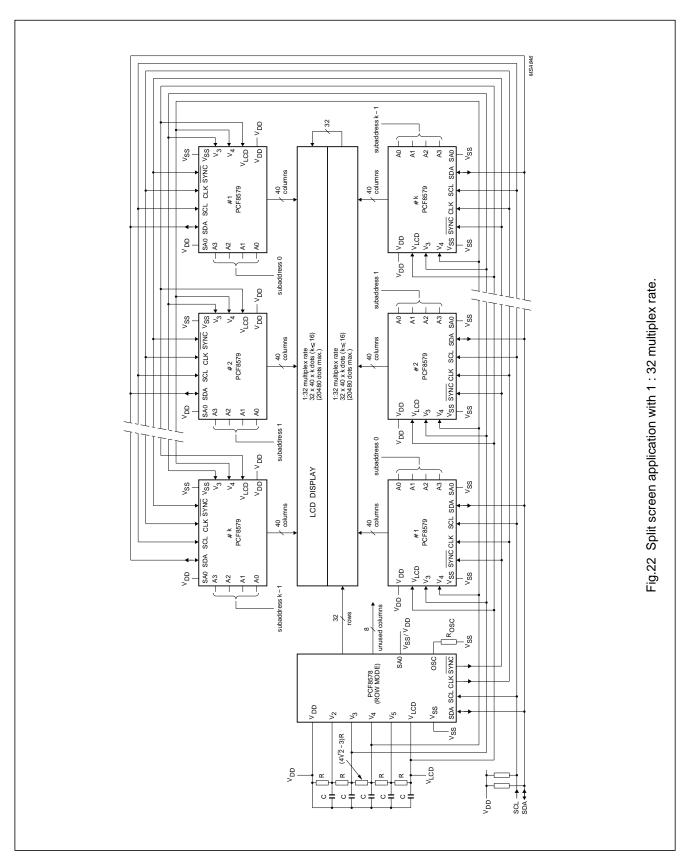
PCF8579



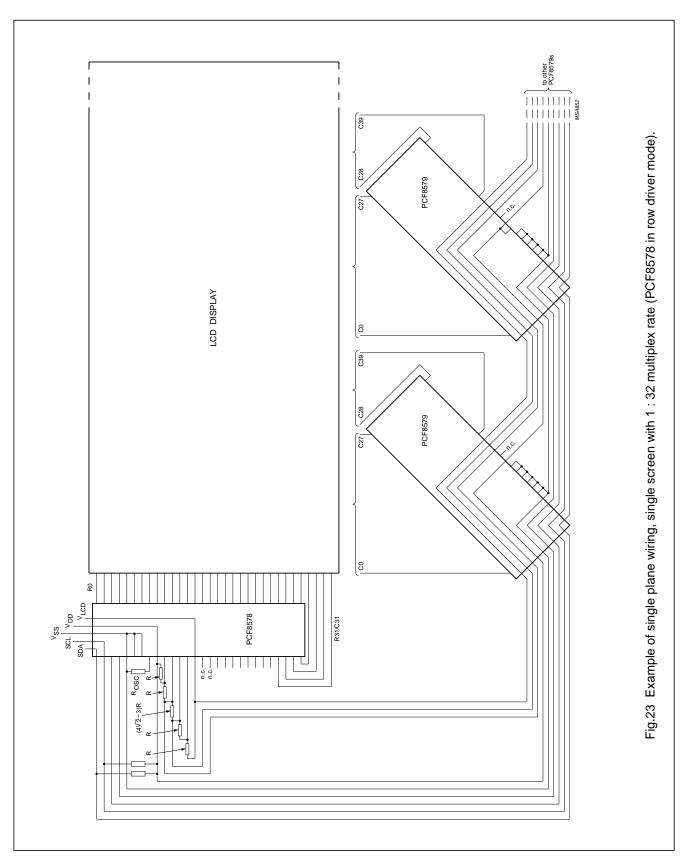
LCD column driver for dot matrix graphic displays


PCF8579

APPLICATION INFORMATION

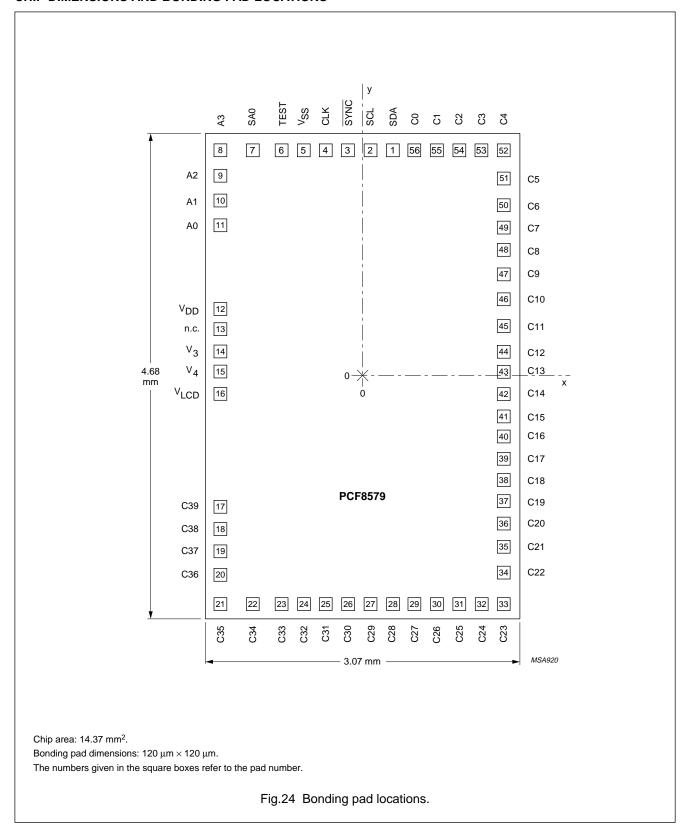

LCD column driver for dot matrix graphic displays

PCF8579


LCD column driver for dot matrix graphic displays

PCF8579

LCD column driver for dot matrix graphic displays


PCF8579

LCD column driver for dot matrix graphic displays

PCF8579

CHIP DIMENSIONS AND BONDING PAD LOCATIONS

LCD column driver for dot matrix graphic displays

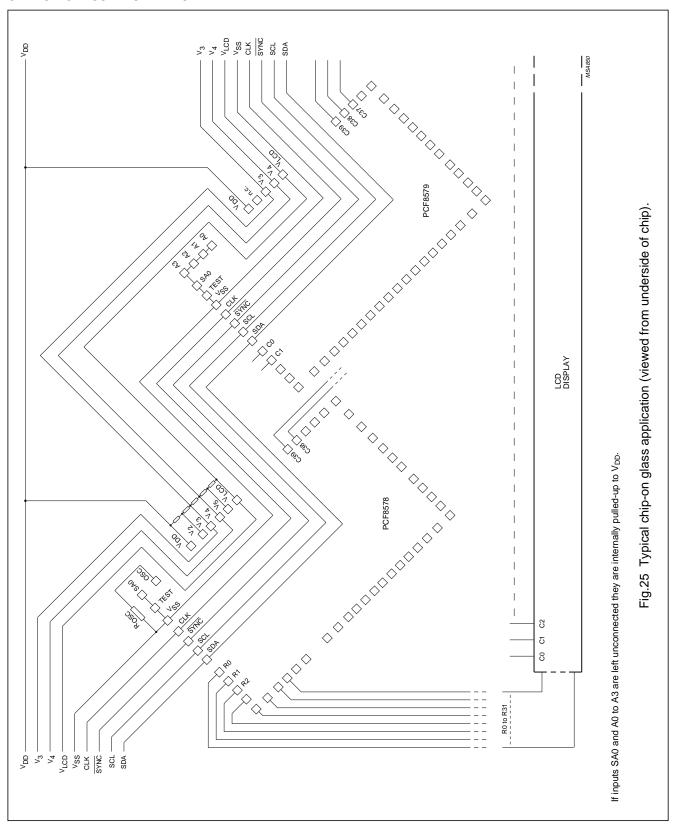
PCF8579

Table 12 Bonding pad locations (dimensions in $\mu\text{m})$

All x/y coordinates are referenced to centre of chip, see Fig.24.

PAD NUMBER	SYMBOL			PI	NS	
PAD NUMBER	STWIBOL	X	У	VSO56	LQFP64	
1	SDA	252	2142	1	7	
2	SCL	48	2142	2	8	
3	SYNC	-156	2142	3	9	
4	CLK	-360	2142	4	10	
5	V _{SS}	-564	2142	5	11	
6	TEST	-786	2142	6	12	
7	SA0	-1032	2142	7	13	
8	A3	-1314	2142	8	14	
9	A2	-1314	1920	9	16	
10	A1	-1314	1716	10	17	
11	A0	-1314	1512	11	18	
12	V_{DD}	-1314	708	12	20	
13	n.c.	-1314	504	13	21	
14	V ₃	-1314	300	14	22	
15	V ₄	-1314	96	15	23	
16	V_{LCD}	-1314	-108	16	24	
17	C39	-1314	-1308	17	30	
18	C38	-1314	-1512	18	31	
19	C37	-1314	-1716	19	32	
20	C36	-1314	-1920	20	33	
21	C35	-1314	-2142	21	35	
22	C34	-1032	-2142	22	36	
23	C33	-786	-2142	23	37	
24	C32	-564	-2142	24	38	
25	C31	-360	-2142	25	39	
26	C30	-156	-2142	26	40	
27	C29	48	-2142	27	41	
28	C28	252	-2142	28	42	
29	C27	498	-2142	29	43	
30	C26	702	-2142	30	44	
31	C25	906	-2142	31	45	
32	C24	1110	-2142	32	46	
33	C23	1314	-2142	33	47	
34	C22	1314	-1830	34	48	
35	C21	1314	-1570	35	49	
36	C20	1314	-1326	36	50	
37	C19	1314	-1122	37	51	
38	C18	1314	-918	38	52	

LCD column driver for dot matrix graphic displays

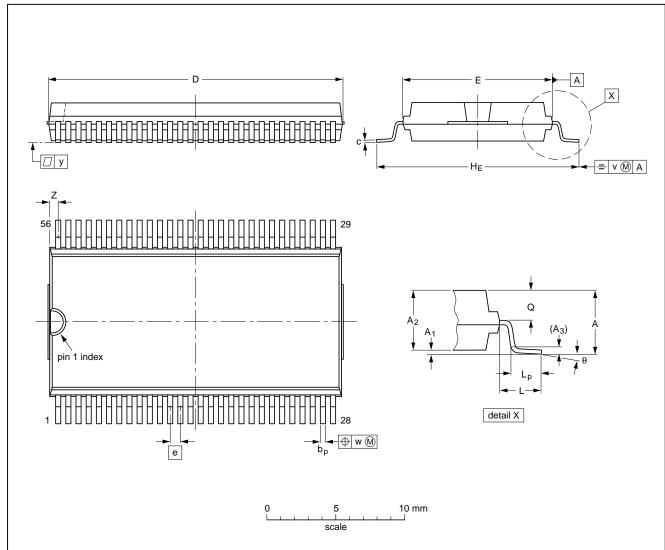

PCF8579

DAD AUIMDED	CYMPOL			Р	INS
PAD NUMBER	SYMBOL	X	У	VSO56	LQFP64
39	C17	1314	-714	39	53
40	C16	1314	-510	40	54
41	C15	1314	-306	41	55
42	C14	1314	-102	42	56
43	C13	1314	102	43	57
44	C12	1314	306	44	58
45	C11	1314	510	45	59
46	C10	1314	714	46	60
47	C9	1314	918	47	61
48	C8	1314	1122	48	62
49	C7	1314	1326	49	63
50	C6	1314	1566	50	64
51	C5	1314	1830	51	1
52	C4	1314	2142	52	2
53	C3	1110	2142	53	3
54	C2	906	2142	54	4
55	C1	702	2142	55	5
56	C0	498	2142	56	6
-	n.c.	-	-	-	15, 19, 21, 25 to 29, 34

LCD column driver for dot matrix graphic displays

PCF8579

CHIP-ON GLASS INFORMATION


LCD column driver for dot matrix graphic displays

PCF8579

PACKAGE OUTLINES

VSO56: plastic very small outline package; 56 leads

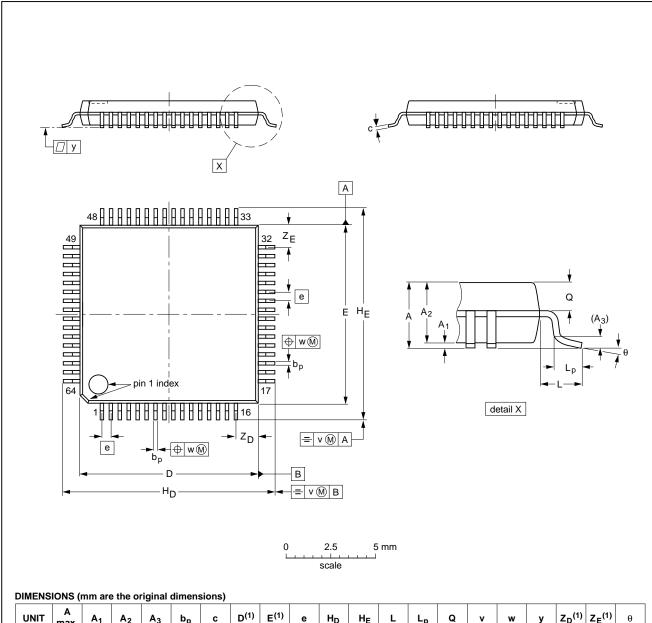
SOT190-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	3.3	0.3 0.1	3.0 2.8	0.25	0.42 0.30	0.22 0.14	21.65 21.35	11.1 11.0	0.75	15.8 15.2	2.25	1.6 1.4	1.45 1.30	0.2	0.1	0.1	0.90 0.55	7°
inches	0.13	0.012 0.004	0.12 0.11	0.01		0.0087 0.0055	0.85 0.84	0.44 0.43	0.03	0.62 0.60	0.089	0.063 0.055	0.057 0.051	0.008	0.004	0.004	0.035 0.022	0°

Note

- 1. Plastic or metal protrusions of 0.3 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT190-1						92-11-17 96-04-02

LCD column driver for dot matrix graphic displays

PCF8579

LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm

SOT314-2

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	Q	v	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.60	0.20 0.05	1.45 1.35	0.25	0.27 0.17	0.18 0.12	10.1 9.9	10.1 9.9	0.5	12.15 11.85	12.15 11.85		0.75 0.45	0.69 0.59	0.2	0.12	0.1	1.45 1.05	1.45 1.05	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT314-2						94-01-07 95-12-19

LCD column driver for dot matrix graphic displays

PCF8579

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all LQFP and VSO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

LQFP

Wave soldering is **not** recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering LQFP packages LQFP48 (SOT313-2), LQFP64 (SOT314-2) or LQFP80 (SOT315-1).

VSO

Wave soldering techniques can be used for all VSO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

METHOD (LQFP AND VSO)

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

LCD column driver for dot matrix graphic displays

PCF8579

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
I too title as a select of	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I2C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.