
INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC12 1996 Jan 22

Preliminary specification

$512\times8\text{-bit}$ CMOS EEPROM with I²C-bus interface

CONTENTS

1	FEATURES	

- 2 APPLICATIONS
- 3 GENERAL DESCRIPTION
- 4 ORDERING INFORMATION
- 5 BLOCK DIAGRAM
- 6 PINNING
- 7 FUNCTIONAL DESCRIPTION
- 7.1 Pinning information
- 7.1.1 Serial clock (SCL)
- 7.1.2 Serial data (SDA)
- 7.1.3 Address pins (A1 and A2)7.1.4 Write control (WC)
- 7.2 Endurance and data retention
- 7.3 Characteristics of the I²C-bus
- 7.3.1 General description
- 7.3.2 Input data protocol
- 7.3.3 START and STOP conditions.
- 7.4 Device operation
- 7.4.1 Acknowledge (ACK)
- 7.4.2 Slave address byte7.4.3 Bank Select bit
- 7.4.4 Read/write bit
- 7.5 Write operations
- 7.5.1 Byte write
- 7.5.2 Page write
- 7.5.3 Acknowledge polling
- 7.6 Read operations
- 7.6.1 Current address byte read
- 7.6.2 Random address byte read
- 7.6.3 Sequential read
- 8 LIMITING VALUES
- 9 DC CHARACTERISTICS
- 10 AC CHARACTERISTICS
- 11 PACKAGE OUTLINE

- 12 SOLDERING
- 12.1 Introduction
- 12.2 Soldering by dipping or by wave
- 12.3 Repairing soldered joints
- 13 DEFINITIONS
- 14 LIFE SUPPORT APPLICATIONS
- 15 PURCHASE OF PHILIPS I²C COMPONENTS

PCF8524

1 FEATURES

- Low power CMOS:
 - operating current: <2 mA
 - standby current: <2 μA
- Hardware write protection:
 - Write Control (WC) pin
- Operation supply voltage 2.7 to 5.5 V
- Extended temperature range -40 to +85 °C
- Internally organized as two banks (each 256×8 -bit)
- I²C interface (bidirectional data transfer protocol)
- Sixteen-byte page-write mode (minimizes total write time per byte
- Automatic word address incrementing (sequential register read)
- Self-timed write cycle
- High reliability:
 - endurance: 100000 cycles
 - data retention: 10 years
- DIP8 or SO8 package (8 pins).

2 APPLICATIONS

The PCF8524 is ideal for applications requiring low voltage and low power consumption.

4 ORDERING INFORMATION

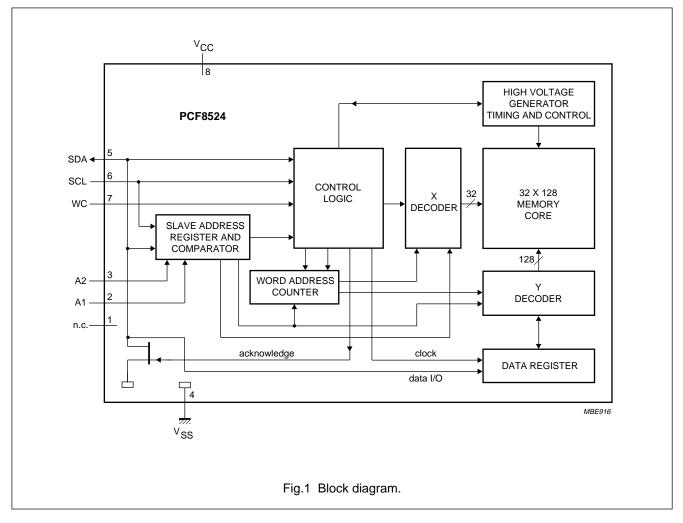
TYPE NUMBER		PACKAGE						
	NAME	DESCRIPTION	VERSION					
PCF8524P	DIP8	plastic dual in-line package; 8 leads (300 mil)						

Typical applications include:

- Alarm devices
- Electronic locks
- Measuring devices
- Keys
- Pagers
- Cellular phones.

3 GENERAL DESCRIPTION

The PCF8524 is a cost effective 4096 bit ($2 \times 256 \times 8$ -bit) serial Electrical Erasable Programmable Read Only Memory (EEPROM). The device is fabricated using advanced CMOS EEPROM technology. This IC operates from a single supply voltage within the range of 2.7 to 5.5 V.


The PCF8524 is internally organized as two 256×8 -bit memory banks. It features an I²C-bus serial interface and software protocol allowing operation on a 2-wire bus.

Up to four PCF8524s may be connected to the 2-wire bus establishing their device addresses using the address input pins (A1 and A2).

PCF8524

$512\times8\mbox{-bit}$ CMOS EEPROM with I^2C-bus interface

5 BLOCK DIAGRAM

6 PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
A1	2	address 1 input
A2	3	address 2 input
V _{SS}	4	ground
SDA	5	serial data input/output (I/O)
SCL	6	serial clock input
WC	7	write control input
V _{CC}	8	supply voltage

7 FUNCTIONAL DESCRIPTION

7.1 Pinning information

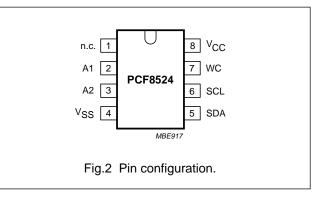
7.1.1 SERIAL CLOCK (SCL)

The SCL input is used to clock data into and out of the device. In the write mode, data must remain stable when SCL is HIGH. In the read mode, data is clocked out on the falling edge of SCL.

7.1.2 SERIAL DATA (SDA)

The SDA pin is a bidirectional pin used to transfer data into and out of the device. Data may only change when SCL is LOW, except START and STOP conditions. It is an open-drain output, and may be wire-ORed with any number of open-drain or open-collector outputs.

7.1.3 ADDRESS PINS (A1 AND A2)


The address inputs are used to set the 2-bit device address of the PCF8524 which will identify it on the I^2 C-bus. The address pins may be tied HIGH or LOW, or they may be actively driven. These inputs allow up to four PCF8524 devices to be distinguished on the I^2 C-bus.

7.1.4 WRITE CONTROL (WC)

The write control input pin is used to disable the write circuitry to the memory. If WC = HIGH the write function is disabled, to protect previously written data. If WC = LOW the write function is enabled.

7.2 Endurance and data retention

The PCF8524 is designed for applications requiring up to 100000 write cycles and unlimited number of read cycles. It provides 10 years of secure data retention, with or without supply voltage applied, after the execution of 100000 write cycles.

7.3 Characteristics of the I²C-bus

7.3.1 GENERAL DESCRIPTION

The I²C-bus is designed for two-way, 2-line serial communication for different integrated circuits. The 2-lines are:

- 1. Serial Data line (SDA).
- 2. Serial Clock Line (SCL).

The SDA line must be connected to the positive supply voltage by a pull-up resistor, located somewhere on the I²C-bus (see Fig.3). Data transfer between devices may be initiated with a START condition only when SCL and SDA are HIGH (I²C-bus is not busy).

7.3.2 INPUT DATA PROTOCOL

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable while the clock is HIGH, because changes on the data line, while SCL is HIGH will be interpreted as a START or STOP condition (see Fig.4).

7.3.3 START AND STOP CONDITIONS.

When both data (SDA) and clock (SCL) lines are HIGH, the I²C-bus is referred to as 'not busy'. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition. A LOW-to-HIGH transition of the data line, while the clock is HIGH, is defined as the STOP condition (see Fig.5).

7.4 Device operation

The device supports the I²C-bus bidirectional data transmission protocol. The protocol defines any device that sends data onto the I²C-bus as a 'transmitter' and the receiving device as the 'receiver'. The device controlling the data transmission is the 'master' and the controlled device is the 'slave'. In all events the PCF8524 will be a 'slave' device because it never initiates any data transfers.

Up to four PCF8524s can be connected to the I²C-bus and can be selected by the A1 and A2 device addresses. A0 and A2 must be connected to either V_{CC} , V_{SS} or they may be actively driven. A0 and A2 define the address of the device. Other devices may be connected to the I²C-bus but each device needs its own device identification code.

7.4.1 ACKNOWLEDGE (ACK)

Acknowledge is a software convention used to indicate successful data transfers. The transmitting device, either the master or the slave, will release the I²C-bus after transmitting 8-bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge that it has received 8-bits of data (see Fig.6).

The PCF8524 will respond with an acknowledge after recognition of a START condition and its slave address byte. If both the device and a write operation have been selected, the PCF8524 will respond with an acknowledge after the receipt of each subsequent 8-bit word.

In the read mode, the PCF8524 transmits 8-bits of data, then releases the SDA line, and monitors the line for an acknowledge signal. If an acknowledge is detected, and no STOP condition is generated by the master, the PCF8524 will continue to transmit data.

If an acknowledge is not detected, the PCF8524 terminates further data transmissions and awaits a STOP condition before returning to the standby power mode.

7.4.2 SLAVE ADDRESS BYTE

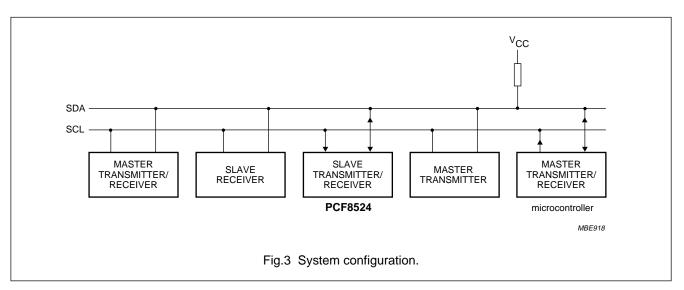
Following a START condition, the master must output the address to be accessed. The most significant 4 bits of the slave address are the 'device type identifier'. For a PCF8524 the address identifier is 1010 (see Table 1).

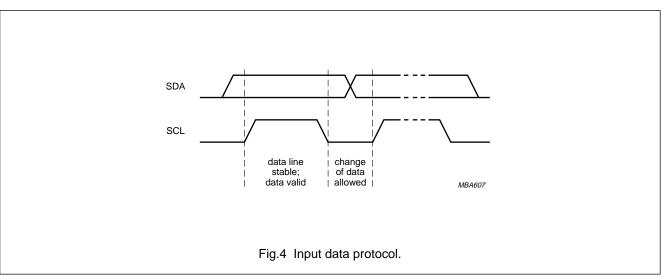
The next 2 bits are device address, addressing a particular device. Using this addressing scheme, a system may cascade up to four PCF8524 devices on the I^2 C-bus. The device address is defined by the state of the A1 and A2 input pins.

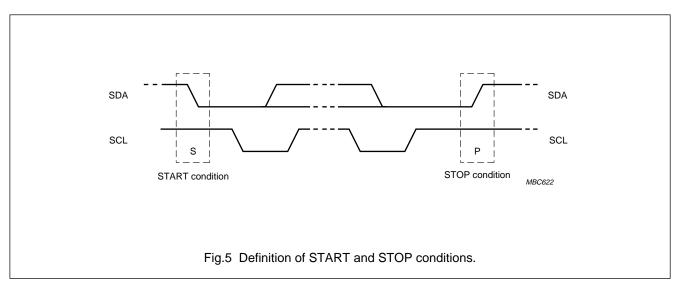
7.4.3 BANK SELECT BIT

The next bit of the serial stream is the Bank Select bit (BS). it is used by the host to toggle between the two 2 kbit banks of memory. It is, in effect, the most significant bit of the word address, or A8.

7.4.4 READ/WRITE BIT


The last bit of the slave address defines the operation to be performed. When $R/\overline{W} = 1$, a read operation is selected. If $R/\overline{W} = 0$, a write operation is selected (see Table 1).


Table 1Slave address byte


	DEVICI IDEN1	e type Tifier		-	DEVICE	_	R/W
1	0	1	0	A2	A1	BS	note 1

Note

- 1. This is the read/write bit:
 - a) When $R/\overline{W} = 1$, a read operation is selected.
 - b) When $R/\overline{W} = 0$, a write operation is selected.

7.5 Write operations

The PCF8524 allows two types of write operations:

- Byte write operation; this operation writes a single byte during the nonvolatile write period (t_{WR}).
- Page write operation; this operation allows up to 16 bytes in the same page to be stored during t_{WR}.

7.5.1 BYTE WRITE

After the slave address is sent (to identify the slave device, select the bank and specify a read or write operation), a second byte is transmitted which contains the word address of any one of the 256 words in the bank selected by the slave address byte.

Upon receipt of the word address, the PCF8524 responds with an acknowledge, and waits for the next 8 bits of data, again responding with an acknowledge. The master then terminates the transfer by generating a STOP condition, at which time the PCF8524 begins the internal write cycle.

While the internal write cycle is in progress, the PCF8524 inputs are disabled, and the device will not respond to any requests from the master. Figure 7 shows an overview of the address, acknowledge and data transfer sequence.

7.5.2 PAGE WRITE

The PCF8524 has the capability to perform a 16 bytes page write operation. It is initiated in the same way as the byte write operation, but instead of terminating the write cycle after the first data word is transferred, the master can transmit up to 15 more words. After the receipt of each word, the PCF8524 will respond with an acknowledge.

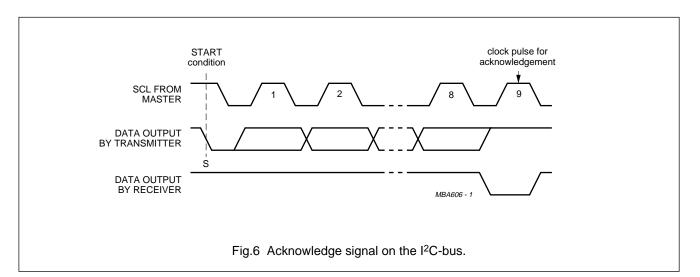
The device automatically increments the address for subsequent data words. After the receipt of each word, the two low order address bits are internally incremented by one. The high order 5 bits of the address remain constant. If the master should transmit more than 16 words, prior to generating the STOP condition, the address counter will 'roll over', and the previously written data will be overwritten. In the same way as during a byte write operation, all inputs are disabled during the internal write cycle. Figure 7 shows an overview of the address, acknowledge and data transfer sequence.

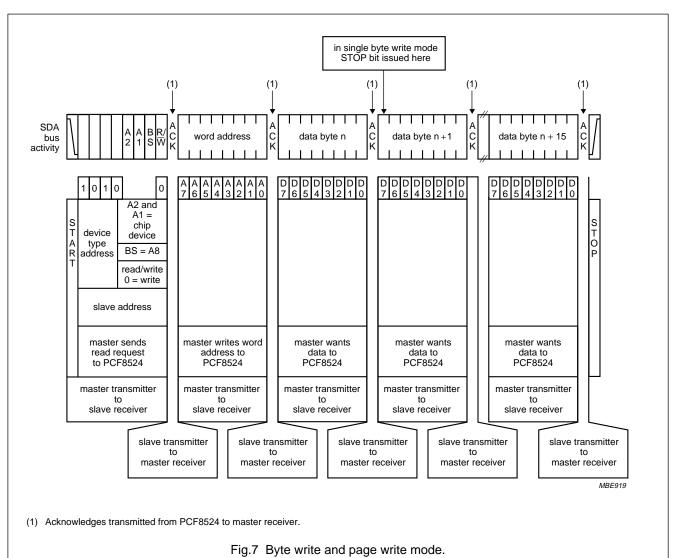
7.5.3 ACKNOWLEDGE POLLING

When the PCF8524 is performing an internal write operation, it will not recognize a START condition. Since the device will only return an acknowledge after it accepts the START condition, the part can be continuously queried until an acknowledge is issued, indicating that the internal write cycle is complete.

To poll the device, give it a START condition, followed by a slave address for a write operation (see Fig.8).

7.6 Read operations


Read operations are initiated with setting the R/\overline{W} bit of the slave address byte to logic 1. There are four different read operations:


- 1. Current address byte read.
- 2. Random address byte read.
- 3. Current address sequential read.
- 4. Random address sequential read.

7.6.1 CURRENT ADDRESS BYTE READ

The PCF8524 contains an internal address counter which maintains the address of the last word accessed, incremented by one. If the last address accessed (either a read or a write operation) was to address location n, the next read operation would access data from address n + 1, and update the current address pointer. When the PCF8524 receives the slave address field with the R/W bit set to logic 1, it issues an acknowledge signal and transmits the 8-bit word stored at address n + 1.

The current address read operation only accesses a single byte of data. The master does not acknowledge the transfer, but does generate a STOP condition. At this point, the PCF8524 discontinues the transmission (see Fig.9 for the address, acknowledge and data transfer sequence).

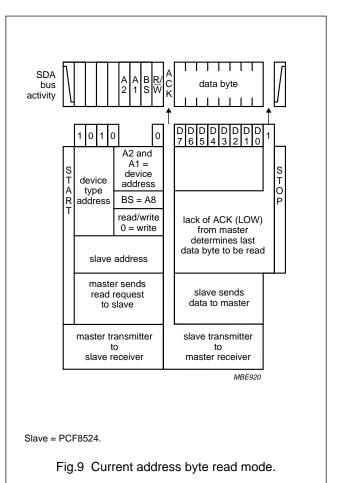
7.6.2 RANDOM ADDRESS BYTE READ

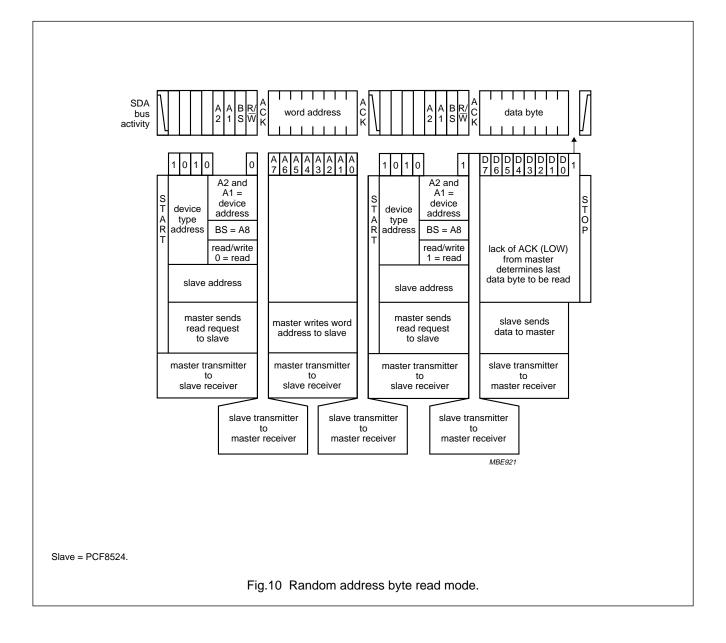
Random address read operations allow the master to access any memory location at random. This operation involves a two-step process. First the master issues a write command which includes the START condition and the slave address field (with the R/W bit set to write), followed by the address of the word it is to read. This procedure sets the internal address counter of the PCF8524 to the desired address.

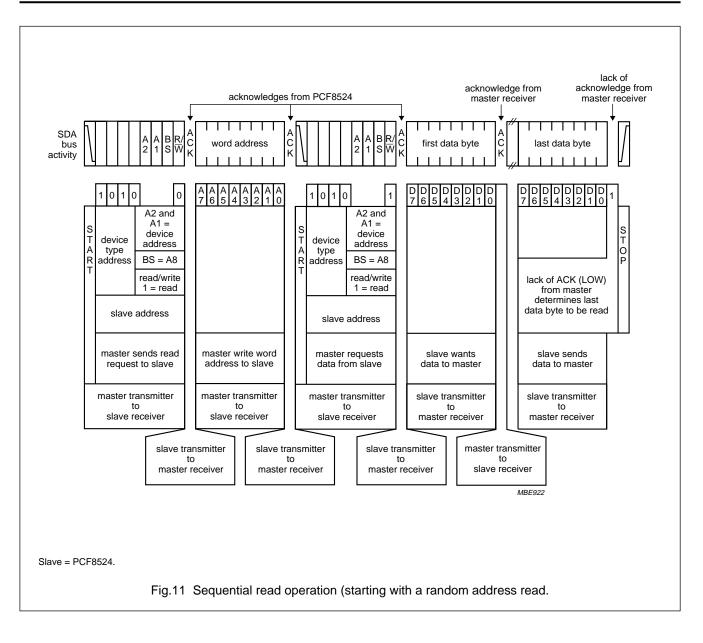
After the word address acknowledge is received by the master, the master immediately reissues a START condition followed by another slave address field with the R/W bit set to read. The PCF8524 will respond with an acknowledge and transmits the 8 data bits stored in the addressed location. At this point, the master does not acknowledge the transmission, but generates the STOP condition. The PCF8524 discontinues the data transmission and reverts to its standby power mode (see Fig.10 for the address, acknowledge and data transfer sequence).

internal write cycle in progress: begin ACK polling issue START issue slave adress and R/W = 0issue STOP ACK no returned yes (internal write cycle compared) next operation no a write? ves issue STOP issue byte address await next proceed with write command MGC077

Fig.8 Acknowledge polling.


7.6.3 SEQUENTIAL READ


Sequential reads can be initiated as either a current address read or random address read. The first word is transmitted in the same way as during the other byte read modes (current address byte read or random address byte read), but in this event the master responds with an acknowledge signal, indicating that it requires additional data from the PCF8524.


The PCF8524 continues to output data for each received acknowledge signal. The master terminates the sequential read operation by not responding with an acknowledge signal, and issues a STOP condition.

During a sequential read operation, the internal address counter is automatically incremented with each acknowledge signal. For read operations, all address bits are incremented, allowing the entire array to be read using a single read command.

When the counter reaches the top of the array, it will 'roll over' to the bottom of the array and continue to transmit data for each acknowledge bit it receives (see Fig.11).

PCF8524

$512\times8\text{-bit}$ CMOS EEPROM with I^2C-bus interface

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		0	6.5	V
Vn	voltage on any pin		-0.5	V _{CC} + 0.5	V
lo	output current		-	5	mA
T _{sol}	soldering temperature	<10 s	_	300	°C
T _{stg}	storage temperature		-65	+125	°C
T _{amb}	operating ambient temperature		-40	+85	°C
V _{es}	electrostatic handling	JEDEC method	-2000	+2000	V

9 DC CHARACTERISTICS

 V_{CC} = 2.7 to 5.5 V; T_{amb} = -40 to +85 °C; unless otherwise specified.

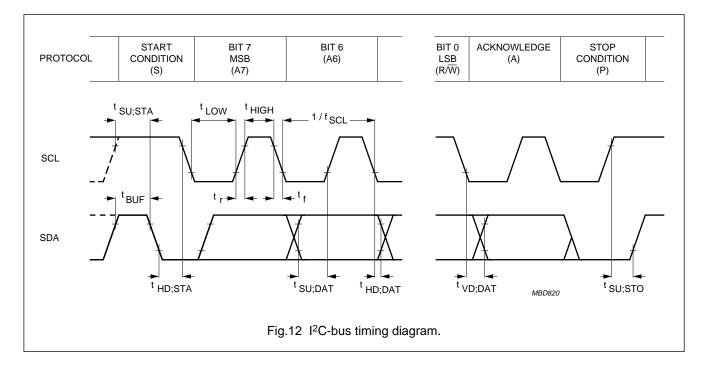
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{CC}	supply current (CMOS)	V _{CC} = 5 V ±10%; note 1	-	2	mA
		V _{CC} = 3 V ±10%; note 1	-	1	mA
I _{stb}	standby current (CMOS)	SCL = SDA = V _{CC} ; note 2	-	2	μA
I _{LI}	input leakage current	$V_{I} = 0$ to V_{CC}	-	10	μA
I _{LO}	output leakage current	$V_{O} = 0$ to V_{CC}	_	10	μA
V _{IL}	LOW level input voltage pins A0 to A2, SCL and SDA		-	0.3V _{CC}	V
V _{IH}	HIGH level input voltage pins A0 to A2, SCL and SDA		0.7V _{CC}	-	V
V _{OL}	LOW level output voltage	I _{OL} = 3 mA	_	0.4	V
Cl	input capacitance	T _{amb} = 25 °C; f _{SCL} = 100 kHz	-	5	pF
C _O	output capacitance	T _{amb} = 25 °C; f _{SCL} = 100 kHz	-	8	pF

Notes

1. f_{SCL} = 100 kHz; SDA = open-circuit; all other inputs connected to ground (V_{SS}) or V_{CC}.

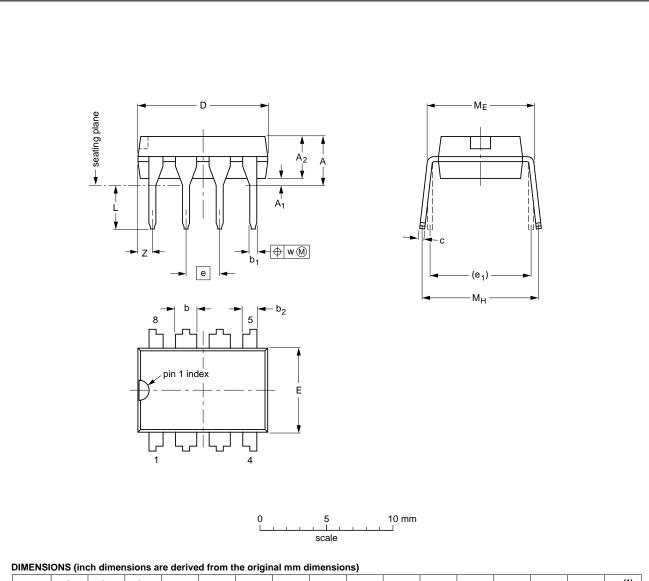
2. All other inputs connected to ground (V_{SS}) or V_{CC} .

PCF8524


10 AC CHARACTERISTICS

 V_{CC} = 2.7 to 5.5 V; T_{amb} = -40 to +85 °C; unless otherwise specified (see Fig.12); note 1.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
f _{SCL}	SCL clock frequency		0	100	kHz
t _{LOW}	SCL LOW time		4.7	-	μs
t _{HIGH}	SCL HIGH time		4.0	_	μs
t _{BUF}	bus free time	before new transmission	4.7	-	μs
t _{SU;STA}	START condition set-up time		4.7	_	μs
t _{HD;STA}	START condition hold time		4.0	_	μs
t _{su;sтo}	STOP condition set-up time		4.7	_	μs
t _{VD;DAT}	SCL LOW-to-SDA data out valid		0.3	3.5	μs
t _{HD;DAT}	data hold time	SCL LOW to SDA output data change	0.3	-	μs
t _r	SCL and SDA rise time		_	1000	ns
t _f	SCL and SDA fall time		_	300	ns
t _{SU;DAT}	input data set-up time		250	_	ns
t _{HD;DAT}	data hold time		0	-	ns
t _{SP}	noise spike width		_	100	ns
T _{cy(w)}	write cycle time	V _{CC} = 5 V ±10%	_	10	ms
		V _{CC} = 3 V ±10%	-	25	ms


Note

1. A detailed description of the l²C-bus specification, with applications, is given in brochure *"The l²C-bus and how to use it"*. This brochure may be ordered using the code 9398 393 40011.

11 PACKAGE OUTLINE

DIP8: plastic dual in-line package; 8 leads (300 mil)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	м _н	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.14	0.53 0.38	1.07 0.89	0.36 0.23	9.8 9.2	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	1.15
inches	0.17	0.020	0.13	0.068 0.045	0.021 0.015	0.042 0.035	0.014 0.009	0.39 0.36	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.045

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERENCES		EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT97-1	050G01	MO-001AN				-92-11-17 95-02-04

PCF8524

SOT97-1

12 SOLDERING

12.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

12.2 Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

12.3 Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

13 DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	Decification This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					

Application information

Where application information is given, it is advisory and does not form part of the specification.

14 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

15 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.