
INTEGRATED CIRCUITS

Product specification Supersedes data of May 1994 File under Integrated Circuits, IC14 1996 Nov 21

PCF84C85A

CONTENTS

1	FEATURES
2	GENERAL DESCRIPTION
3	ORDERING INFORMATION
4	BLOCK DIAGRAM
5	PINNING INFORMATION
5.1 5.2	Pinning Pin description
6	PARALLEL PORTS
7	INSTRUCTION SET
8	SUMMARY OF DERIVATIVE PORTS AND REGISTERS
9	ROM MASK OPTIONS
10	HANDLING
11	LIMITING VALUES
12	DC CHARACTERISTICS
13	AC CHARACTERISTICS
13.1	I ² C-bus interface characteristics
14	PACKAGE OUTLINES
15	SOLDERING
15.1 15.2 15.2.1 15.2.2 15.3 15.3.1 15.3.2 15.3.3	Introduction DIP Soldering by dipping or by wave Repairing soldered joints SO and VSO Reflow soldering Wave soldering Repairing soldered joints
16	DEFINITIONS
10	LIFE SUPPORT APPLICATIONS
.,	

18 PURCHASE OF PHILIPS I²C COMPONENTS

PCF84C85A

1 FEATURES

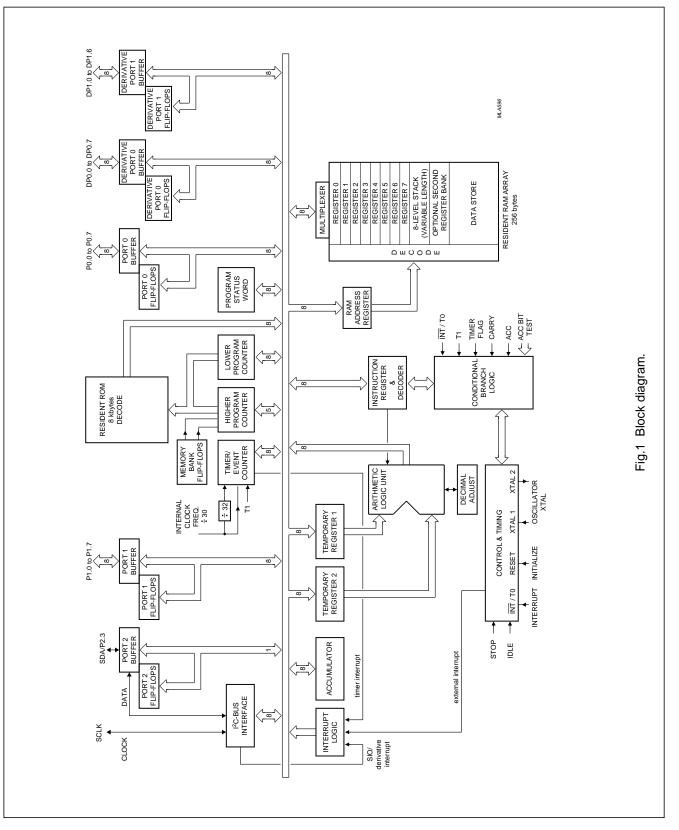
- 8-bit CPU, ROM, RAM, I/O in a single 40-lead package
- 8 kbytes ROM
- 256 bytes RAM
- I²C-bus interface with multi-master capability
- Over 100 instructions (based on MAB8048) all of 1 or 2 cycles
- 32 quasi-bidirectional I/O port lines
- 8-bit programmable timer/event counter 1
- Three single-level vectored interrupts:
 - external
 - 8-bit programmable timer/event counter 1
 - I²C-bus
- Two test inputs, one of which also serves as the external interrupt input
- Stop and Idle modes
- Logic supply voltage: $V_{DD} = 2.5$ to 5.5 V
- Clock frequency: 1 to 16 MHz
- Operating temperature: -40 to +85 °C
- Manufactured in silicon gate CMOS process.

3 ORDERING INFORMATION (see note 1)

2 GENERAL DESCRIPTION

This data sheet details the specific properties of the PCF84C85A. The shared properties of the PCF84CxxxA family of microcontrollers are described in the *"PCD84xxxA family"* data sheet which should be read in conjunction with this publication.

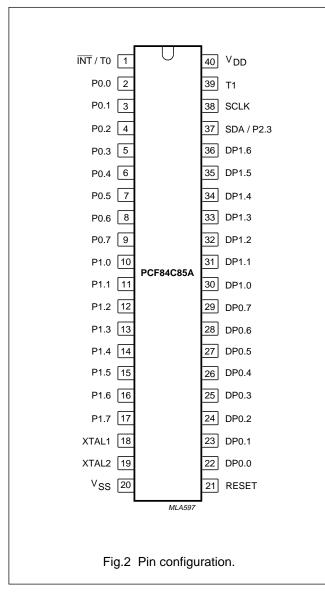
The PCF84C85A is a general purpose CMOS microcontroller with emphasis on input/output. It provides 32 I/O port lines, 8 kbytes of program memory and 256 bytes of RAM. In addition to the 32 I/O port lines, the microcontroller provides an on-chip I²C-bus interface. This two-line serial bus extends the microcontroller's capabilities when implemented with the powerful I²C-bus peripherals.These include LCD drivers, telecom circuits, AD/DA converters, clock/calendar circuits, EEPROM and RAM and are listed in *"Data Handbook IC12, I²C Peripherals"*.


The instruction set is based on that of the MAB8048 and is a sub-set of that listed in the *"PCF84CXXXA family"* data sheet.

ТҮРЕ		PACKAGE				
NUMBER	NAME	NAME DESCRIPTION VERSIO				
PCF84C85AP	DIP40	40 plastic dual in-line package; 40 leads (600 mil) SOT 12				
PCF84C85AT	VSO40	plastic very small outline package; 40 leads	SOT 158-1			

Note

1. Please refer to the Order Entry Form (OEF) for this device for the full type number to use when ordering. This type number will also specify the required program and the ROM mask options.


4 BLOCK DIAGRAM

PCF84C85A

5 PINNING INFORMATION

5.1 Pinning

6 PARALLEL PORTS

Of the standard quasi-bidirectional I/O ports, Port 2 is incomplete, providing only line SDA/P2.3 that is shared with the I²C-bus interface. In addition to the standard ports, two derivative I/O ports are available:

- Derivative Port of 8 lines (DP0.0 to DP0.7)
- Derivative Port of 7 lines (DP1.0 to DP1.6).

Missing bits of incomplete ports, i.e. P2.0 to P2.2 and DP1.7, are fixed at zero in the corresponding registers.

5.2 Pin description

Table 1 DIP40 and VSO40 packages.

SYMBOL	PIN	TYPE	DESCRIPTION
INT/T0	1	I	Interrupt/Test 0
P0.0 to P0.7	2 to 9	I/O	8 bits of Port 0: 8-bit quasi-bidirectional I/O port
P1.0 to P1.7	10 to 17	I/O	8 bits of Port 1: 8-bit quasi-bidirectional I/O port
XTAL1	18	I	XTAL input: crystal oscillator/external clock input
XTAL2	19	0	XTAL output: crystal oscillator output
V _{SS}	20	Р	ground
RESET	21	I	Reset input
DP0.0 to DP0.7	22 to 29	I/O	Derivative Port 0: quasi-bidirectional I/O port (8-bit)
DP1.0 to DP1.6	30 to 36	I/O	Derivative Port 1: quasi-bidirectional I/O lines (7-bit)
SDA/P2.3	37	I/O	bidirectional data line of the I ² C-bus interface; or Port 2 quasi-bidirectional I/O port (1 bit only)
SCLK	38	I/O	bidirectional clock line of the l ² C-bus interface
T1	39	I	Test 1: count input of 8-bit timer/event counter 1
V _{DD}	40	Р	positive supply

7 INSTRUCTION SET

See *"PCF84CXXXA family"* data sheet for a complete description of the instruction set.

PCF84C85A

8 SUMMARY OF DERIVATIVE PORTS AND REGISTERS

Table 2Derivative Ports.

DERIVATIVE ADDRESS	ТҮРЕ	REGISTER MNEMONIC	DESCRIPTION
00H	R	DP0L	Derivative Port 0 lines
01H	R	DP1L	Derivative Port 1 lines
02H	R/W	DP0FF	Derivative Port 0 flip-flops
03H	R/W	DP1FF	Derivative Port 1 flip-flops
04H	_	_	

Table 3Derivative Registers.

REGISTER MNEMONIC	7	6	5	4	3	2	1	0
DP0L	D0.7	D0.6	D0.5	D0.4	D0.3	D0.2	D0.1	D0.0
DP1L	0	D1.6	D1.5	D1.4	D1.3	D1.2	D1.1	D1.0
DP0FF	F0.7	F0.6	F0.5	F0.4	F0.3	F0.2	F0.1	F0.0
DP1FF	0	F1.6	F1.5	F1.4	F1.3	F1.2	F1.1	F1.0

9 ROM MASK OPTIONS

ROM CODE		OPTION				
Program/data	Any mix of instr 8 kbytes.	Any mix of instructions and data up to ROM size of 8 kbytes.				
Port Output						
P0.0 to P0.7	standard	open-drain	push-pull			
P1.0 to P1.7	standard	open-drain	push-pull			
SDA/P2.3	_	open-drain	_			
DP0.0 to DP0.7	standard	open-drain	push-pull			
DP1.0 to DP1.7	standard	open-drain	push-pull			
Port State after reset						
P0.0 to P0.7	set	reset	_			
P1.0 to P1.7	set	reset	_			
SDA/P2.3	set	_	_			
DP1.0 to DP1.7	set	reset	_			
DP2.0 to DP2.2	set	reset	_			
Oscillator						
Transconductance	LOW (g _{mL})	MEDIUM (g _{mM})	HIGH (g _{mH})			

PCF84C85A

10 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take normal precautions appropriate to handling MOS devices. See "Data Handbook IC14, Section: Handling MOS devices".

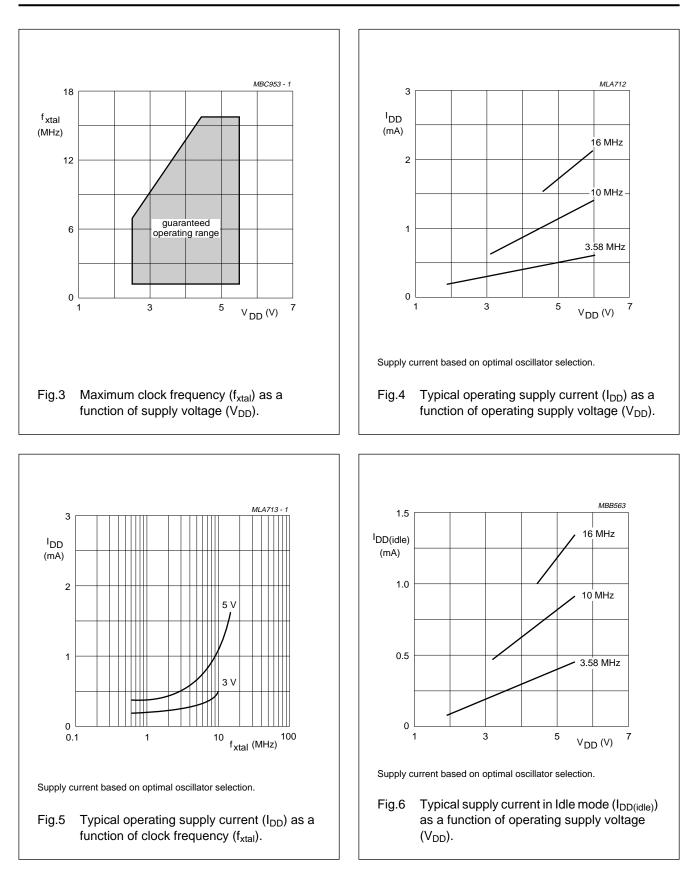
11 LIMITING VALUES

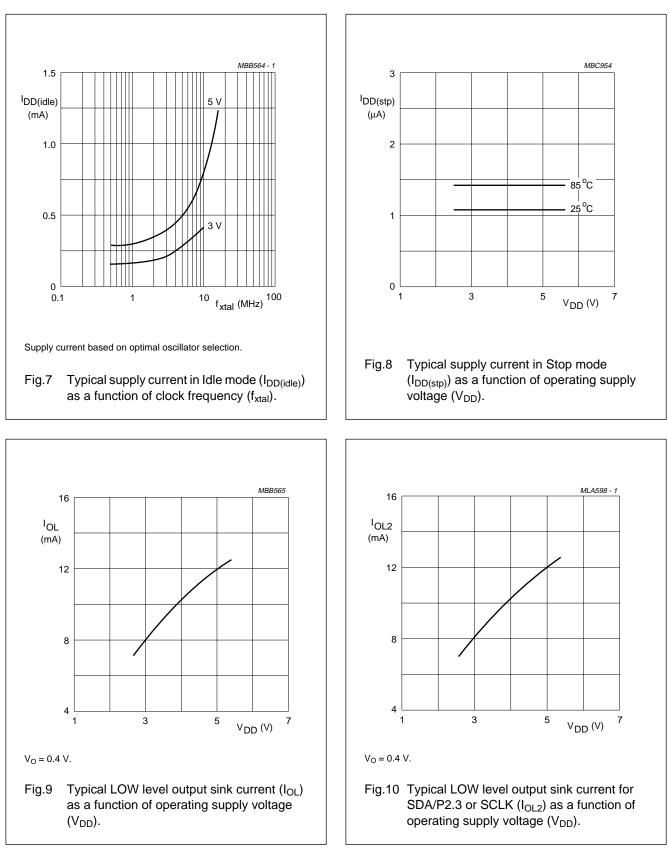
In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	supply voltage	-0.5	+7	V
VI	all input voltages	-0.5	V _{DD} + 0.5	V
II.	DC input current	-10	+10	mA
Io	DC output current	-10	+10	mA
P _{tot}	total power dissipation	-	125	mW
Po	power dissipation per output	-	30	mW
I _{SS}	ground supply current (V _{SS})	-50	+50	mA
T _{stg}	storage temperature range	-65	+150	°C
Tj	operating junction temperature	_	90	°C

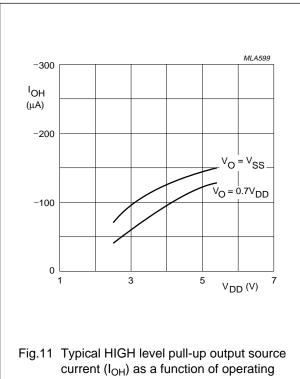
PCF84C85A

12 DC CHARACTERISTICS

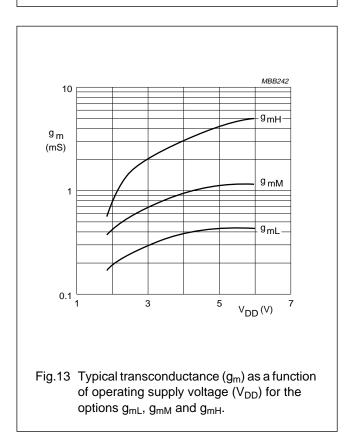

 V_{DD} = 2.5 to 5.5 V; V_{SS} = 0 V; T_{amb} = -40 to +85 °C; all voltages with respect to V_{SS} ; unless otherwise specified.

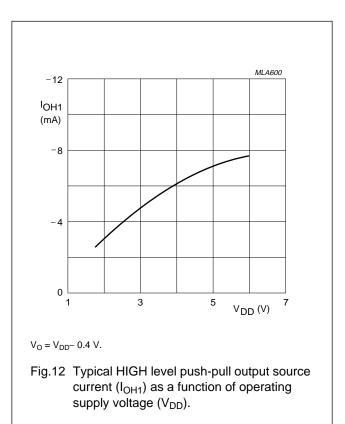

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	רואט
V _{DD}	operating supply voltage	see Fig. 3	2.5	_	5.5	V
I _{DD}	operating supply current	note 1; see Figs 4 and 5				
		$V_{DD} = 3 \text{ V}; \text{ f}_{xtal} = 3.58 \text{ MHz} (g_{mL})$	_	0.3	0.6	mA
		$V_{DD} = 5 \text{ V}; \text{ f}_{xtal} = 10 \text{ MHz} (g_{mL})$	_	1.1	3.0	mA
		$V_{DD} = 5 \text{ V}; \text{ f}_{xtal} = 16 \text{ MHz} (g_{mM})$	_	1.7	5.0	mA
		$V_{DD} = 5 \text{ V}; \text{ f}_{\text{xtal}} = 16 \text{ MHz} (g_{\text{mH}})$	_	2.5	6.0	mA
I _{DD(idle)}	supply current (Idle mode)	note 1; see Figs 6 and 7				
		$V_{DD} = 3 \text{ V}; \text{ f}_{xtal} = 3.58 \text{ MHz} (g_{mL})$	_	0.2	0.4	mA
		$V_{DD} = 5 \text{ V}; \text{ f}_{xtal} = 10 \text{ MHz} (g_{mL})$	_	0.8	1.6	mA
		$V_{DD} = 5 \text{ V}; \text{ f}_{xtal} = 16 \text{ MHz} (g_{mM})$	_	1.2	4.0	mA
		$V_{DD} = 5 \text{ V}; \text{ f}_{\text{xtal}} = 16 \text{ MHz} (g_{\text{mH}})$	_	1.7	5.0	mA
I _{DD(stp)}	supply current (Stop mode)	V_{DD} = 2.5 V; notes 1 and 2; see Fig.8	-	1.2	10	μA
Inputs	•		I			
V _{IL}	LOW level input voltage		0	-	0.3V _{DD}	V
V _{IH}	HIGH level input voltage		0.7V _{DD}	_	V _{DD}	V
ILI	input leakage current	$V_{SS} \le V_I \le V_{DD}$	-1	_	+1	μA
Outputs					•	
I _{OL}	LOW level output sink current; except SDA/P2.3 and SCLK	$V_{DD} = 5 \text{ V}; V_{O} = 0.4 \text{ V}; \text{ see Fig.9}$	1.6	12	-	mA
I _{OL2}	LOW level output sink current; SDA/P2.3 and SCLK	$V_{DD} = 5 \text{ V}; V_{O} = 0.4 \text{ V}; \text{ see Fig.10}$	3.0	12	_	mA
I _{OH}	HIGH level pull-up output	$V_{DD} = 5 V; V_{O} = 3.5 V;$ see Fig.11	-40	-100	_	μA
	source current	$V_{DD} = 5 V; V_{O} = 0 V;$ see Fig.11	_	-140	-400	μA
I _{OH1}	HIGH level push-pull output source current	V_{DD} = 5 V; V_{O} = 4.6 V; see Fig.12	-1.6	-7	-	mA
Oscillator	(see Fig.13)		I			
9 _{mL}	LOW transconductance	V _{DD} = 5 V	0.2	0.4	1.0	mS
9 _{mM}	MEDIUM transconductance	V _{DD} = 5 V	0.9	1.6	3.2	mS
g _{mH}	HIGH transconductance	V _{DD} = 5 V	3.0	4.5	9.0	mS
R _F	feedback resistor		0.3	1.0	3.0	MΩ

Notes


V_{IL} = V_{SS}; V_{IH} = V_{DD}; open drain outputs connected to V_{SS}; all other outputs, including XTAL2, open (typical values at 25 °C with crystal connected between XTAL1 and XTAL2).

2. $V_{IL} = V_{SS}$; $V_{IH} = V_{DD}$; RESET and T1 at V_{SS} ; $\overline{INT}/T0$ at V_{DD} ; crystal connected between XTAL1 and XTAL2; open drain outputs connected to V_{SS} ; all other outputs open.





PCF84C85A

supply voltage (V_{DD}).

PCF84C85A

13 AC CHARACTERISTICS

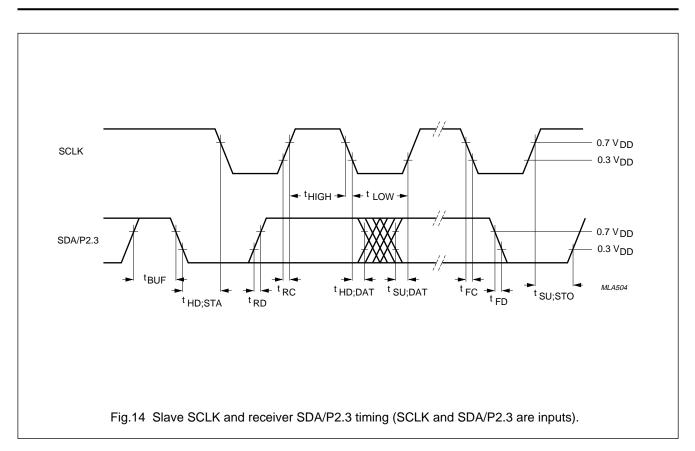
 V_{DD} = 2.5 to 5.5 V; V_{SS} = 0 V; T_{amb} = -40 to +85 °C; all voltages with respect to V_{SS} ; unless otherwise specified.

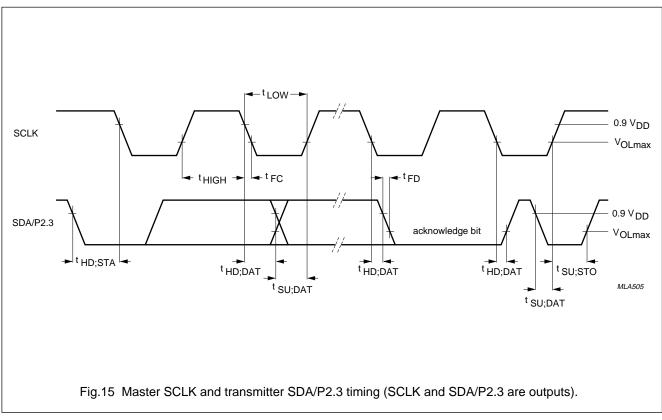
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _r	rise time all outputs	$V_{DD} = 5 \text{ V}; \text{ T}_{amb} = 25 ^{\circ}\text{C}; \text{ C}_{L} = 50 \text{ pF}$	-	30	-	ns
t _f	fall time all outputs	$V_{DD} = 5 \text{ V}; \text{ T}_{amb} = 25 ^{\circ}\text{C}; \text{ C}_{L} = 50 \text{ pF}$	-	30	-	ns
f _{xtal}	clock frequency	see Fig.3	1	-	16	MHz

 Table 4
 I²C-bus timing (see Figs 14 and 15)

SYMBOL	PARAMETER	INPUT (see Fig.14)	OUTPUT (see Fig.15; note 1)
SCLK	· ·	·	
t _{HD;STA}	START condition hold time	$\geq \frac{14}{f_{xtal}}$	$\frac{DF+9}{2\times f_{xtal}}$
t _{LOW}	SCLK LOW time	$\geq \frac{17}{f_{xtal}}$	$\frac{DF-3}{2 \times f_{xtal}} ; note \ 2$
t _{HIGH}	SCLK HIGH time	$\geq \frac{17}{f_{xtal}}$	$\frac{DF+3}{2 \times f_{xtal}} ; note \ 2$
t _{RC}	SCLK rise time	≤1 μs	≤1 μs; note 3
t _{FC}	SCLK fall time	≤0.3 μs	≤0.1 μs; note 4
SDA		·	
t _{BUF}	bus free time	$\geq \frac{14}{f_{xtal}}$	≥4.7 μs; note 5
t _{SU;DAT}	data set-up time	≥250 ns	$\geq \frac{15}{f_{xtal}}$; note 6
t _{HD;DAT}	data hold time	≥0	$\geq \frac{9}{f_{xtal}}$
t _{RD}	SDA/P2.3 rise time	≤1 μs	≤1 μs; note 3
t _{FD}	SDA/P2.3 fall time	≤0.3 μs	≤0.1 μs; note 4
t _{SU;STO}	STOP condition set-up time	$\geq \frac{14}{f_{xtal}}$	$\frac{DF-3}{2 \times f_{xtal}}$

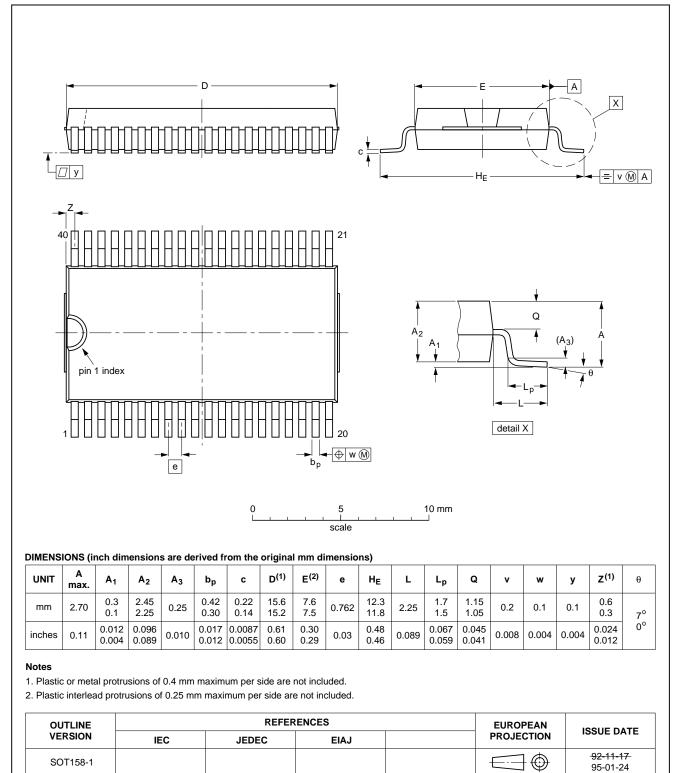
Notes


1. DF stands for Division Factor: the divisor of f_{xtal} (see "PCF84CXXXA family" data sheet).


2. Values given for ASC = 0; for ASC = 1:
$$t_{HIGH} = \frac{3 (DF + 1)}{4 \times f_{xtal}}$$
; $t_{LOW} = \frac{DF - 3}{4 \times f_{xtal}}$

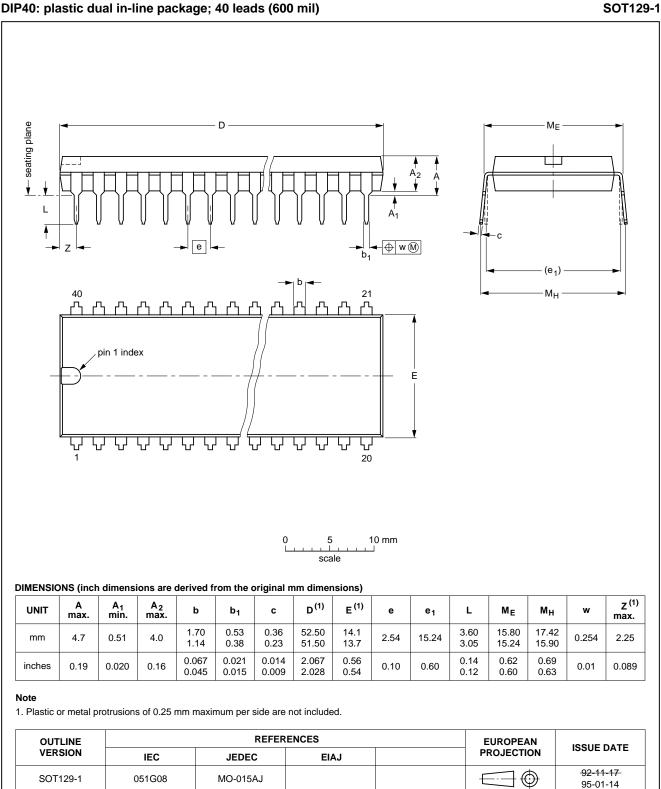
- 3. Determined by I²C-bus capacitance (C_b) and external pull-up resistor.
- 4. At maximum allowed I²C-bus capacitance $C_b = 400 \text{ pF}$.
- 5. Determined by program.

6. If
$$t_{LOW} < \frac{24}{f_{xtal}}$$
, $t_{SU:DAT} \ge \frac{t_{LOW} - 9}{f_{xtal}}$, independent of ASC.


1996 Nov 21

14 PACKAGE OUTLINES

VSO40: plastic very small outline package; 40 leads



SOT158-1

PCF84C85A

SOT158-1

PCF84C85A

DIP40: plastic dual in-line package; 40 leads (600 mil)

PCF84C85A

15 SOLDERING

15.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

15.2 DIP

15.2.1 SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

15.2.2 REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

15.3 SO and VSO

15.3.1 REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO and VSO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

15.3.2 WAVE SOLDERING

Wave soldering techniques can be used for all SO and VSO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.3.3 REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

PCF84C85A

16 DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	ct specification This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					

Where application information is given, it is advisory and does not form part of the specification.

17 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

18 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.