DATA SHEET

PCF1303T 18-element bar graph LCD driver

File under Integrated Circuits, IC01

GENERAL DESCRIPTION

The PCF1303T is an 18-element bar graph LCD driver with linear relation to control voltage $\left(\mathrm{V}_{\mathrm{c}}\right)$ when in pointer or thermometer mode.

Fig. 1 Block diagram.

PACKAGE OUTLINE

PCF1303T: 28-lead mini-pack; plastic (SO28; SOT136A); SOT136-1; 1996 September 02.

18-element bar graph LCD driver

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	$\mathrm{~V}_{\text {osc }}$	oscillator pin
4	I_{1}	mode select input
5	$\mathrm{~V}_{\mathrm{SS}}$	ground (0 V)
6 to 23	Q_{1} to Q_{18}	segment outputs
24	Q_{R}	back-plane output
25	$\mathrm{~V}_{\mathrm{C}}$	control voltage
26	$\mathrm{~V}_{\text {ref } \min }$	reference voltage inputs
27	$\mathrm{~V}_{\text {ref max }}$	
28	$\mathrm{~V}_{\mathrm{DD}}$	positive supply voltage

FUNCTION TABLE

$\mathbf{I}_{\mathbf{1}}$	MODE
L	pointer thermometer

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level

(1) Pins 2 and 3 should be connected to V_{SS}.

Fig. 2 Pin configuration.

FUNCTIONAL DESCRIPTION

The PCF1303T is an 18-element bar graph LCD driver with linear relation to the control voltage when in pointer or thermometer mode.

The first segment will energize when the control voltage is less than the trigger voltage ($\mathrm{V}_{\mathrm{T}(\mathrm{bar}) 2}$ see equation (3)).
The circuit has analogue and digital sections.
The analogue section consists of a comparator with the inverting input coupled to the input control voltage. The non-inverting input of the comparator is connected via 17 analogue switches to the nodes of an 18-element resistor divider. The extremities of the resistor divider are coupled via high-input impedance amplifiers to the maximum reference voltage input and the minimum reference voltage input.

The control input functions with Schmitt trigger action.
The digital section has one reference output $\left(Q_{R}\right)$ to drive the back-plane and 18 outputs $\left(Q_{1}\right.$ to $\left.Q_{18}\right)$ to drive the segments.

The segment outputs incorporate two latches and some gates.
The circuit is driven by an on-chip oscillator with external resistors and capacitors. The outputs are driven at typical 100 Hz .

LINEARITY

$\mathrm{V}_{\text {step }}=\mathrm{V}_{\text {step }}{ }^{\prime} \pm \Delta \mathrm{V}_{\text {step }}$
$\mathrm{V}_{\text {step }}$, is the voltage drop (internal) across the resistor-ladder network.
$\Delta \mathrm{V}_{\text {step }}$ is the differential on $\mathrm{V}_{\text {step }}$.
$V_{\text {step }^{\prime}}=\frac{\left(\mathrm{V}_{\text {ref } \max } \pm \Delta \mathrm{V}_{2^{\prime}}\right)-\left(\mathrm{V}_{\text {ref } \min } \pm \Delta \mathrm{V}_{2}\right)}{18}$
$\Delta \mathrm{V}_{2}$ and $\Delta \mathrm{V}_{2^{\prime}}$ are the maximum offset voltage spread of the on-chip voltage followers.

ABSOLUTE VOLTAGE TRIGGER LEVEL

The absolute voltage trigger level at the V_{c} pin is $\mathrm{V}_{\mathrm{T}(\text { bar }) \mathrm{n}}$;

$$
\begin{equation*}
\mathrm{V}_{\mathrm{T} \text { (bar) } \mathrm{n}}=\left(\mathrm{V}_{\text {ref } \min } \pm \Delta \mathrm{V}_{2}\right)+\left\{(\mathrm{n}-1) \mathrm{V}_{\text {step }} \pm \Delta \mathrm{V}_{\mathrm{R}}\right\} \pm \Delta \mathrm{V}_{1} \pm \mathrm{V}_{\mathrm{H}} \tag{3}
\end{equation*}
$$

$\mathrm{n}=$ number of segments; $2 \leq \mathrm{n} \leq 18$.
$\Delta \mathrm{V}_{\mathrm{R}}$ is the voltage deviation at step n of the resistor-ladder network (for $\mathrm{n}=2$ or $18, \Delta \mathrm{~V}_{\mathrm{R}}=\Delta \mathrm{V}_{\text {step }}$).
$\Delta \mathrm{V}_{1}$ is the offset voltage for the on-chip comparator.
V_{H} is the hysteresis voltage: $30 \% \mathrm{~V}_{\text {step }} \geq \mathrm{V}_{\mathrm{H}} \geq 10 \% \mathrm{~V}_{\text {step }}$.
Note to equation (3)
For $\Delta \mathrm{V}_{2}$ the same sign (+ or -) should be used as in equation (2).

RATINGS

Limiting values as in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	$V_{D D}$	$-0,5$ to +15	V
Voltage on any input	V_{1}	$-0,5$ to $V_{D D}+0,5$	V
D.C. current into any input or output	$\pm I_{1}$	$m a x .10$	mA
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-40 to +85	${ }^{\circ} \mathrm{C}$

D.C. CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	SYMBOL	Tamb (${ }^{\circ} \mathrm{C}$)							UNIT	NOTES
			-40		+25			+85			
			MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
Quiescent device current	10,0	I_{DD}		1200			1200		1200	$\mu \mathrm{A}$	1
Operating supply current	8,2	I_{DD}		2,0			2,0		2,0	mA	2
Input leakage current	$\begin{array}{\|l\|} \hline 6,0 \\ 8,2 \\ 10,0 \end{array}$	$\begin{aligned} & \pm I_{1} \\ & \pm I_{1} \\ & \pm I_{1} \end{aligned}$		$\begin{array}{\|l\|} \hline 300 \\ 300 \\ 300 \end{array}$			$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$		$\begin{aligned} & \hline 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & \hline \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	3
HIGH level input voltage select input I_{1}	$\begin{array}{\|l\|} \hline 6,0 \\ 8,2 \\ 10,0 \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \hline 4,2 \\ & 5,8 \\ & 7,0 \end{aligned}$		$\begin{array}{\|l\|} \hline 4,2 \\ 5,8 \\ 7,0 \\ \hline \end{array}$			$\begin{aligned} & \hline 4,2 \\ & 5,8 \\ & 7,0 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	
LOW level input voltage select input I_{1}	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$		$\begin{array}{\|l\|} \hline 1,8 \\ 2,4 \\ 3,0 \\ \hline \end{array}$	2,4		$\begin{array}{\|l\|} \hline 1,8 \\ 2,4 \\ 3,0 \end{array}$		$\begin{aligned} & \hline 1,8 \\ & 3,0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	
HIGH level output voltage	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \hline 5,95 \\ & 8,15 \\ & 9,95 \end{aligned}$		$\begin{array}{\|l\|} \hline 5,95 \\ 8,15 \\ 9,95 \end{array}$			$\begin{aligned} & \hline 5,95 \\ & 8,15 \\ & 9,95 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	4
LOW level output voltage	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{OL}} \end{array}$		$\begin{aligned} & \hline 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$			$\begin{array}{\|l\|} \hline 0,05 \\ 0,05 \\ 0,05 \end{array}$		$\begin{aligned} & \hline 0,05 \\ & 0,05 \\ & 0,05 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	4
Output current HIGH	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-\mathrm{l}_{\mathrm{OH}} \\ & -\mathrm{I}_{\mathrm{OH}} \\ & -\mathrm{l}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \hline 0,6 \\ & 0,85 \\ & 1,0 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 0,5 \\ 0,7 \\ 0,85 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline 0,35 \\ 0,45 \\ 0,6 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	5
Output current LOW	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \\ & \hline \end{aligned}$	IOL IOL IOL	$\begin{aligned} & \hline 0,65 \\ & 1,0 \\ & 1,3 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 0,5 \\ 0,8 \\ 1,0 \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline 0,4 \\ 0,6 \\ 0,8 \end{array}$		$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	6

PARAMETER	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	SYMBOL	Tamb (${ }^{\circ} \mathrm{C}$)							UNIT	NOTES
			-40		+25			+85			
			MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
Input voltage control input V_{C}	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{I C} \\ \mathrm{~V}_{I C} \\ \mathrm{~V}_{\mathrm{IC}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0,0 \\ 0,0 \\ 0,0 \\ \hline \end{array}$	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0,0 \\ 0,0 \\ 0,0 \end{array}$		$\begin{array}{\|l\|} \hline 6,0 \\ 8,2 \\ 10,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0,0 \\ 0,0 \\ 0,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6,0 \\ 8,2 \\ 10,0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$	
Input voltage $V_{\text {ref max }}$ input	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \\ & \hline \end{aligned}$	$V_{\text {IR } \max }$ $\mathrm{V}_{\text {IR max }}$ $V_{\text {IR max }}$	$\begin{array}{\|l\|} \hline 3,6 \\ 3,6 \\ 3,6 \end{array}$	$\begin{array}{\|l\|} \hline 5,5 \\ 7,7 \\ 9,5 \end{array}$	$\begin{array}{\|l\|} \hline 3,6 \\ 3,6 \\ 3,6 \end{array}$		$\begin{array}{\|l\|} \hline 5,5 \\ 7,7 \\ 9,5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3,6 \\ 3,6 \\ 3,6 \end{array}$	$\begin{array}{\|l\|} \hline 5,5 \\ 7,7 \\ 9,5 \end{array}$	$\begin{array}{\|l} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$	
Input voltage $V_{\text {ref min }}$ input	$\begin{array}{\|l\|} \hline 6,0 \\ 8,2 \\ 10,0 \\ \hline \end{array}$	$V_{\text {IR min }}$ $V_{\text {IR }}^{\text {min }}$ $V_{I R}$ min	$\begin{array}{\|l\|} \hline 0,5 \\ 0,5 \\ 0,5 \end{array}$	$\begin{array}{\|l\|} \hline 1,0 \\ 4,5 \\ 6,0 \end{array}$	$\begin{array}{\|l\|} \hline 0,5 \\ 0,5 \\ 0,5 \end{array}$		$\begin{array}{\|l\|} \hline 1,0 \\ 4,5 \\ 6,0 \end{array}$	$\begin{array}{\|l\|} \hline 0,5 \\ 0,5 \\ 0,5 \end{array}$	$\begin{aligned} & \hline 1,0 \\ & 4,5 \\ & 6,0 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$	
$\begin{array}{\|c} \mathrm{V}_{\text {ref max }}- \\ \mathrm{V}_{\text {ref } \text { min }} \end{array}$	$\begin{array}{\|l\|} \hline 6,0 \\ 8,2 \\ 10,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \Delta \mathrm{V}_{\mathrm{I}} \\ \Delta \mathrm{~V}_{\mathrm{I}} \\ \Delta \mathrm{~V}_{\mathrm{I}} \end{array}$	$\begin{array}{\|l\|} \hline 3,0 \\ 3,0 \\ 3,0 \end{array}$		$\begin{array}{\|l\|} \hline 3,0 \\ 3,0 \\ 3,0 \end{array}$			$\begin{array}{\|l\|} \hline 3,0 \\ 3,0 \\ 3,0 \end{array}$		$\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$	
DC component bar output to back-plane output	8,2	$\pm \mathrm{V}_{\mathrm{BP}}$		25		10	25		25	mV	7
Back-plane frequency	8,2	f_{BP}	90	110		100		90	110	Hz	8
Input offset voltage	8,2	$\pm \mathrm{V}_{10}$		120			120		120	mV	9
Step voltage variation	8,2	$\pm \Delta \mathrm{V}_{\text {step }}$		50			50		50	mV	10
Input voltage slew rate V_{c} input	$\begin{aligned} & \hline 6,0 \\ & 8,2 \\ & 10,0 \end{aligned}$	$\begin{array}{\|l} \hline \text { SR } \\ S R \\ S R \end{array}$		$\begin{aligned} & \hline 50 \\ & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	V/s V/s V/s	11

18-element bar graph LCD driver

Notes to D.C. characteristics

1. $\mathrm{V}_{\text {ref } \min }=0,5 \mathrm{~V}, \mathrm{~V}_{\text {ref } \max }=9,5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{OSC}}=0 \mathrm{~V}, \mathrm{I}_{1}$ at V_{SS} or V_{DD}.
2. See Fig.2.
3. Pin under test at V_{SS} or V_{DD}. All other inputs simultaneously at V_{SS} or V_{DD}.
4. $\mathrm{I}_{\mathrm{O}}=0$, all inputs at $\mathrm{V}_{S S}$ or V_{DD}.
5. $V_{O H}=V_{D D}-0,5 \mathrm{~V}$, all inputs at $V_{S S}$ or $V_{D D}$.
6. $V_{O L}=0,4 \mathrm{~V}$, all inputs at V_{SS} or V_{DD}.
7. $f_{B P}=100 \mathrm{~Hz}$, load segment outputs to back-plane output.
$\mathrm{C}_{1}-\mathrm{C}_{18} \leq 0,01 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{BP}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots \mathrm{C}_{18} \leq 0,05 \mu \mathrm{~F}, \mathrm{R}_{1}-\mathrm{R}_{18} \geq 2 \mathrm{M} \Omega$.
8. $R_{\text {osc }}=0,1 \mathrm{M} \Omega, C_{o s c}=390 \mathrm{pF}$.
9. Number of segments 2 or 18 .

For $\mathrm{n}=2$:
$\mathrm{V}_{\text {IO }}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\text {ref } \min }-\frac{\left(\mathrm{V}_{\text {ref max }}\right)-\left(\mathrm{V}_{\text {ref min }}\right)}{18} \pm \mathrm{V}_{\mathrm{H}}$
For $n=18$:
$V_{\text {IO }}=V_{c}-V_{\text {ref max }}+\frac{\left(V_{\text {ref max }}\right)-\left(V_{\text {ref min }}\right)}{18} \pm V_{H}$
10. See equation (1).
11. Condition applies with clock oscillator such that $f_{B P}=100 \mathrm{~Hz}$.

Fig. 3 Typical application.

18-element bar graph LCD driver

PACKAGE OUTLINE

SO28: plastic small outline package; 28 leads; body width 7.5 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 18.1 \\ & 17.7 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.69 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.043 \\ 0.039 \end{array}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT136-1	$075 E 06$	MS-013AE			$-95-0124$	

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

18-element bar graph LCD driver

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

