PAL10／10016P4－2（DIP Only） 2 ns ECL ASPECT ${ }^{\text {TM }}$ Programmable Array Logic

General Description

The PAL10／10016P4－2 is a member of the National Semi－ conductor 28 －pin high speed ECL PAL＊family．This device utilizes National Semiconductor＇s ASPECT（Advanced Sin－ gle Poly Emitter Coupled Technology）process with a newly developed tungsten fuse technology to provide the highest－ speed user－programmable replacements for conventional ECL SSI－MSI logic with significant chip－count reduction．The JEDEC fuse－map format and programming algorithm of this device is compatible with those of all prior ECL PAL prod－ ucts from National．
Programmable logic devices provide convenient solutions for a wide variety of application－specific functions，including random logic，custom decoders，state machines，etc．By programming fuse links to configure AND／OR gate connec－ tions，the system designer can implement custom logic as convenient sum－of－products Boolean functions．System pro－ totyping and design iterations can be performed quickly us－ ing these off－the－shelf products．
The PAL10／10016P4－2 logic array has a total of 16 comple－ mentary input pairs， 32 product terms and 4 programmable polarity output functions．Each output function is the OR－ sum of 8 product terms．Each product term is satisfied when all array inputs which are connected to it（via intact fuses） are in the correct state as defined by the equation for that

Block Diagram PAL10／10016P4－2

$V_{E E}=12, V_{C C}=24, V_{C C O}(5,7)=6$
$V_{C C 0}(18,20)=19$
Pinout applies to 24－pin DIP

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.

Temperature Under Bias
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{E E}$ Relative to $V_{C C}$
Input Voltage
-7 V to +0.5 V
$V_{E E}$ to +0.5 V

Output Current	-50 mA
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
ESD Tolerance	TBD

$C_{\text {ZAP }}=100 \mathrm{pF}$
$R_{\text {ZAP }}=1500 \Omega$
Test Method: Human Body Model
Test Specification: NSC SOP-5-028

Recommended Operating Conditions for Commercial Range

Symbol	Parameter		Min	Typ	Max	Units
VEE	Supply Voltage	10 KH	-5.46	-5.2	-4.94	V
		100K	-4.80	-4.5	-4.20	
T	Operating Temperature (Note)	10 KH	0		+75	${ }^{\circ} \mathrm{C}$
		100K	0		+85	

Electrical Characteristics Over Recommended Operating Conditions

Output Load $=50 \Omega$ to -2.0 V

Symbol	Parameter	Conditions		$\mathrm{T}_{\text {A }}$	Min	Max	Units
V_{IH}	High Level Input Voltage	Guaranteed Input Voltage High For All Inputs	10 KH	$\begin{gathered} 0^{\circ} \mathrm{C} \\ + \\ +25^{\circ} \mathrm{C} \\ + \\ \hline 5^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{r} -1170 \\ -1130 \\ -1070 \\ \hline \end{array}$	$\begin{aligned} & -840 \\ & -810 \\ & -735 \\ & \hline \end{aligned}$	mV
			100K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-1165	-880	
VIL	Low Level Input Voltage	Guaranteed Input Voltage Low For All Inputs	10 KH	$\begin{gathered} 0^{\circ} \mathrm{C} \\ + \\ +25^{\circ} \mathrm{C} \\ + \\ \hline 5^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -1950 \\ & -1950 \\ & -1950 \\ & \hline \end{aligned}$	- 1480 -1480 -1450	mV
			100K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-1810	-1475	
V_{OH}	High Level Output Voltage	$V_{\text {IN }}=V_{\text {IH }}$ Max. or $V_{\text {IL }}$ Min.	10 KH	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -1020 \\ & -980 \\ & -920 \\ & \hline \end{aligned}$	$\begin{aligned} & -840 \\ & -810 \\ & -735 \end{aligned}$	mV
			100K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-1025	-880	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$V_{\text {IN }}=V_{\text {IH }}$ Max. or $V_{\text {IL }}$ Min.	10 KH	$\begin{array}{r} \\ 0^{\circ} \mathrm{C} \\ + \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{array}{r} -1950 \\ -1950 \\ -1950 \\ \hline \end{array}$	$\begin{aligned} & -1630 \\ & -1630 \\ & -1600 \\ & \hline \end{aligned}$	mV
			100K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-1810	-1620	
I_{H}	High Level Input Current	$V_{I N}=V_{1 H}$ Max.	10 KH	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$		220	$\mu \mathrm{A}$
			100K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
IIL	Low Level Input Current	$V_{\mathbb{N}}=V_{\text {IL }}$ Min.	10 KH	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$	0.5		$\mu \mathrm{A}$
			100K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
I_{EE}	Supply Current	$V_{E E}=\operatorname{Min} .$ All Inputs and Outputs Open	10 KH	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	-220		mA
			100K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			

Note: Operating temperatures for circuits in N and J packages are specified as ambient temperatures $\left(\mathrm{T}_{\mathrm{A}}\right)$ with circuits in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Dlstributors for avallablity and specifications.
Temperature Under Blas
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{E E}$ Relative to V_{CC}
Input Voltage

Output Current
$-50 \mathrm{~mA}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
ESD Tolerance
TBD
$C_{\text {ZAP }}=100 \mathrm{pF}$
$R_{\text {ZAP }}=1500 \Omega$
Test Method: Human Body Model
Test Specification: NSC SOP-5-028

Recommended Operating Conditions for Extended (Military) Range*

Symbol	Parameter		Min	Typ	Max	Units
$V_{\text {EE }}$	Supply Voltage	10 KH	-5.46	-5.2	-4.94	V
		100K	-4.80	-4.5	-4.20	
T	Operating Temperature (Note)	10 KH	-55		+125	${ }^{\circ} \mathrm{C}$
		100K	0		+125	

Electrical Characteristics Over Recommended Operating Conditions
Output Load $=50 \Omega$ to -2.0 V

Symbol	Parameter	Conditions		T_{A}	Min	Max	Units
V_{IH}	High Level Input Voltage	Guaranteed Input Voltage High For All Inputs	10 KH	$\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -1250 \\ & -1130 \\ & -1000 \end{aligned}$	$\begin{aligned} & -930 \\ & -810 \\ & -660 \end{aligned}$	mV
			100K	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-1165	-880	
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	Guaranteed Input Voltage Low For All Inputs	10 KH	$\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -1950 \\ & -1950 \\ & -1950 \end{aligned}$	$\begin{aligned} & -1480 \\ & -1480 \\ & -1420 \end{aligned}$	mV
			100K	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-1810	-1475	
V OH	High Level Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max. or $\mathrm{V}_{\text {IL }}$ Min.	10 KH	$\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1110 \\ & -980 \\ & -830 \end{aligned}$	$\begin{aligned} & -930 \\ & -810 \\ & -660 \end{aligned}$	mV
			100K	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-1025	-880	
VOL	Low Level Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max. or $\mathrm{V}_{\text {IL }}$ Min.	10 KH	$\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1950 \\ & -1950 \\ & -1950 \end{aligned}$	$\begin{aligned} & -1630 \\ & -1630 \\ & -1570 \end{aligned}$	mV
			100K	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-1810	-1620	
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ Max.	10 KH	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		220	$\mu \mathrm{A}$
			100K	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ Min.	10 KH	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$	0.5		$\mu \mathrm{A}$
			100K	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
$l_{\text {E }}$	Supply Current	$V_{E E}=\operatorname{Min} .$ All Inputs and Outputs Open	10 KH	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-220		mA
			100K	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			

Note: Operating temperatures for circuits in J and N packages are specified as ambient temperatures (T_{A}) with circuits in a test socket or mounted on a printed circuit board and transverse air llow greater than 500 linear Ipm is maintained.
-Note: Extended (Military) Range available in J package only.

Switching Characteristics

Over Recommended Operating Conditions, Output load: $R_{L}=50 \Omega$ to $-2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ to GND

Symbol	Parameter	Measured Test Conditions	Commercial		Millitary		Units
			Min	Max	Min	Max	
$t_{\text {PD }}$	Input to Output	Measured at Threshold Points (Note 1)		2.5		3.0	ns
t_{r}	Output Rise Time	Measured between 20\% and 80\% points	0.25	1.25	0.25	1.25	ns
t_{1}	Output Fall Time		0.25	1.25	0.25	1.25	ns

Note 1: All AC Measurements are to be made from Threshold Point.
$V_{1 H}=$ Threshold +400 mV
$V_{\text {IL }}=$ Threshold -400 mV
Threshold $=\frac{V_{1 H_{\text {Min }}}+V_{I_{\text {Max }}}}{2}$

Part	Temp	$V_{\mathbf{I N}_{\text {MIn }}}$	$V_{\mathbf{I L}_{\text {Max }}}$	Threshold	$\mathbf{V}_{\mathbf{I H}}$	$V_{\mathbf{I L}}$
10 kH	$-55^{\circ} \mathrm{C}$	-1250	-1480	-1365	-965	-1765
10 kH	$0^{\circ} \mathrm{C}$	-1170	-1480	-1325	-825	-1725
10 kH	$25^{\circ} \mathrm{C}$	-1130	-1480	-1300	-900	-1700
10 kH	$75^{\circ} \mathrm{C}$	-1070	-1450	-1260	-860	-1660
10 kH	$125^{\circ} \mathrm{C}$	-1000	-1420	-1210	-810	-1610
100 k	AII	-1165	-1475	-1300	-800	-1700

Timing Measurements

Test Load

TL/L/10711-3
Connection Diagram
Tual-In-Line Package

Functional Testing

As with all field－programmable devices，the user of the ECL PAL devices provides the final manufacturing step．While National＇s PAL devices undergo extensive testing when they are manufactured，their logic function can be fully test－ ed only after they have been programmed to the user＇s pat－ tern．
To ensure that the programmed PAL devices will operate properly in your system，National Semiconductor（along with most other manufacturers of PAL devices）strongly recom－ mends that devices be functionally tested before being in－ stalled in your system．Even though the number of post－pro－ gramming functional failures is small，testing the logic func－ tion of the PAL devices before they reach system assembly will save board debugging and rework costs．For more infor－ mation about the functional testing of PAL devices，please refer to National Semiconductor＇s Application Note \＃351 and the Programmable Logic Design Guide．

Design Development Support

A variety of software tools and programming hardware is available to support the development of designs using PAL
products．Typical software packages accept Boolean logic equations to define desired functions．Most are available to run on personal computers and generate JEDEC－compati－ ble＂fuse maps＂．The industry－standard JEDEC format en－ sures that the resulting fuse－map files can be downloaded into a large variety of programming equipment．Many soft－ ware packages and programming units support a large vari－ ety of programmable logic products as well．The PLAN soft－ ware package from National Semiconductor supports all programmable logic products available from National and is fully JEDEC－compatible．PLAN software also provides auto－ matic device selection based on the designer＇s Boolean logic equations．
A detailed logic diagram showing all JEDEC fuse－map ad－ dresses for the PAL10／10016P4－2 is provided for direct map editing and diagnostic purposes．For a list of current software and programming support tools available for these devices，please contact your local National Semiconductor sales representative or distributor．If detailed specifications of the ECL PAL programming algorithm are needed，please contact the National Semiconductor Programmable Device Support Department．

Programmer Support

Advin Systems	Sailor PAL	V8．40
Data I／O	Unisite 40	V2．20
Digelec	Model 860	VA－3．2
International Microsystems	ECL－2	V1．44C
Logical Devices	Allpro	V4．0
SMS	Palpro 2X	V31
Stag Microsystems	ZL30A	V32．J
Sprint Plus		

Ordering information

Logic Diagram—PAL1016P4-2/PAL10016P4-2

TL/L/10711-5
JEDEC logic array cell number $=$ product line first cell number + input line number

